电商产品如何依靠用户画像做个性化推荐

起点学院产品经理365成长计划,2天线下闭门集训+1年在线学习,全面掌握BAT产品经理体系。了解详情

了解和分析用户最好的办法就是建立persona(人物角色或者用户画像),它是产品最重要的设计工具和沟通工具。但很多用户研究更多针对的是在产品设计初期对潜在用户的需求定义,persona所代表的是某类人群,一个产品通常会设计3~6个角色代表所有的用户群体。

yonghuhauxiang

在用户画像的过程中有一个很重要的概念叫做颗粒度,就是我们的用户画像应该细化到哪种程度。颗粒度太大,对于产品设计的指导意义就会变小,如果太细,无疑是在压缩潜在用户的范围。

但对于电商产品设计及运营来说,尽量丰富用户画像是最重要也是最需要细致打磨的环节,也就是要做到具象的定量个体描述才能够基于用户数据提供个性化推荐,个性化推荐既是节省用户成本,提升用户体验,也是电商产品提升产品转化率与促进商品交叉销售的重要手段。

所以,依靠用户数据创建用户画像在当前热议大数据的时代越来越受到重视。如何依靠用户数据构建用户画像?这里引用百分点技术总监郭志金《用户画像数据建模方法》一文中所述。

数据源分析

构建用户画像是为了还原用户信息,因此数据来源于:所有用户相关的数据。

对于用户相关数据的分类,引入一种重要的分类思想:封闭性的分类方式。如,世界上分为两种人,一种是学英语的人,一种是不学英语的人;客户分三类,高价值客户,中价值客户,低价值客户;产品生命周期分为,投入期、成长期、成熟期、衰退期……所有的子分类将构成了类目空间的全部集合。

这样的分类方式,有助于后续不断枚举并迭代补充遗漏的信息维度。不必担心架构上对每一层分类没有考虑完整,造成维度遗漏留下扩展性隐患。另外,不同的分类方式根据应用场景,业务需求的不同,也许各有道理,按需划分即可。

本文将用户数据划分为静态信息数据、动态信息数据两大类。

静态信息数据

用户相对稳定的信息,如图所示,主要包括人口属性、商业属性等方面数据。这类信息,自成标签,如果企业有真实信息则无需过多建模预测,更多的是数据清洗工作,因此这方面信息的数据建模不是本篇文章重点。

动态信息数据

用户不断变化的行为信息,一个用户打开网页,买了一个杯子;与该用户傍晚溜了趟狗,白天取了一次钱,打了一个哈欠等等都是用户行为。当行为集中到互联网,乃至电商,用户行为就会聚焦很多,如上图所示:浏览凡客首页、浏览休闲鞋单品页、搜索帆布鞋、发表关于鞋品质的微博、赞“双十一大促给力”的微博消息。等等均可看作互联网用户行为。

本篇文章以互联网电商用户,为主要分析对象,暂不考虑线下用户行为数据(分析方法雷同,只是数据获取途径,用户识别方式有些差异)。

在互联网上,用户行为,可以看作用户动态信息的唯一数据来源。如何对用户行为数据构建数据模型,分析出用户标签,将是本文着重介绍的内容。

目标分析

用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。如,红酒0.8、李宁0.6。

  • 标签,表征了内容,用户对该内容有兴趣、偏好、需求等等。
  • 权重,表征了指数,用户的兴趣、偏好指数,也可能表征用户的需求度,可以简单的理解为可信度,概率。

数据建模方法

下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。

什么用户:关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。

以上列举了互联网主要的用户标识方法,获取方式由易到难。视企业的用户粘性,可以获取的标识信息有所差异。

什么时间:时间包括两个重要信息,时间戳+时间长度。时间戳,为了标识用户行为的时间点,如,1395121950(精度到秒),1395121950.083612(精度到微秒),通常采用精度到秒的时间戳即可。因为微秒的时间戳精度并不可靠。浏览器时间精度,准确度最多也只能到毫秒。时间长度,为了标识用户在某一页面的停留时间。

什么地点:用户接触点,Touch Point。对于每个用户接触点。潜在包含了两层信息:网址 + 内容。网址:每一个url链接(页面/屏幕),即定位了一个互联网页面地址,或者某个产品的特定页面。可以是PC上某电商网站的页面url,也可以是手机上的微博,微信等应用某个功能页面,某款产品应用的特定画面。如,长城红酒单品页,微信订阅号页面,某游戏的过关页。

内容:每个url网址(页面/屏幕)中的内容。可以是单品的相关信息:类别、品牌、描述、属性、网站信息等等。如,红酒,长城,干红,对于每个互联网接触点,其中网址决定了权重;内容决定了标签

注:接触点可以是网址,也可以是某个产品的特定功能界面。如,同样一瓶矿泉水,超市卖1元,火车上卖3元,景区卖5元。商品的售卖价值,不在于成本,更在于售卖地点。标签均是矿泉水,但接触点的不同体现出了权重差异。这里的权重可以理解为用户对于矿泉水的需求程度不同。即,愿意支付的价值不同。

标签&权重

  • 矿泉水 1 // 超市
  • 矿泉水 3 // 火车
  • 矿泉水 5 // 景区

类似的,用户在京东商城浏览红酒信息,与在品尚红酒网浏览红酒信息,表现出对红酒喜好度也是有差异的。这里的关注点是不同的网址,存在权重差异,权重模型的构建,需要根据各自的业务需求构建。

所以,网址本身表征了用户的标签偏好权重。网址对应的内容体现了标签信息。

什么事:用户行为类型,对于电商有如下典型行为:浏览、添加购物车、搜索、评论、购买、点击赞、收藏等等。

不同的行为类型,对于接触点的内容产生的标签信息,具有不同的权重。如,购买权重计为5,浏览计为1。

  • 红酒 1 // 浏览红酒
  • 红酒 5 // 购买红酒

综合上述分析,用户画像的数据模型,可以概括为下面的公式:用户标识 + 时间 + 行为类型 + 接触点(网址+内容),某用户因为在什么时间、地点、做了什么事。所以会打上**标签。

用户标签的权重可能随时间的增加而衰减,因此定义时间为衰减因子r,行为类型、网址决定了权重,内容决定了标签,进一步转换为公式:

标签权重=衰减因子×行为权重×网址子权重

如:用户A,昨天在品尚红酒网浏览一瓶价值238元的长城干红葡萄酒信息。

标签:红酒,长城

时间:因为是昨天的行为,假设衰减因子为:r=0.95

行为类型:浏览行为记为权重1

地点:品尚红酒单品页的网址子权重记为 0.9(相比京东红酒单品页的0.7)

假设用户对红酒出于真的喜欢,才会去专业的红酒网选购,而不再综合商城选购。

则用户偏好标签是:红酒,权重是0.95*0.7 * 1=0.665,即,用户A:红酒 0.665、长城 0.665。

上述模型权重值的选取只是举例参考,具体的权重值需要根据业务需求二次建模,这里强调的是如何从整体思考,去构建用户画像模型,进而能够逐步细化模型。

总结

本文并未涉及具体算法,更多的是阐述了一种分析思想,在计划构建用户画像时,能够给您提供一个系统性、框架性的思维指导。

核心在于对用户接触点的理解,接触点内容直接决定了标签信息。内容地址、行为类型、时间衰减,决定了权重模型是关键,权重值本身的二次建模则是水到渠成的进阶。模型举例偏重电商,但其实,可以根据产品的不同,重新定义接触点。

比如影视产品,我看了一部电影《英雄本色》,可能产生的标签是:周润发 0.6、枪战 0.5、港台 0.3。

最后,接触点本身并不一定有内容,也可以泛化理解为某种阈值,某个行为超过多少次,达到多长时间等。

比如游戏产品,典型接触点可能会是,关键任务,关键指数(分数)等等。如,积分超过1万分,则标记为钻石级用户。钻石用户 1.0。

 

来源:微信公众号【IXDC】

版权:人人都是产品经理遵循行业规范,任何转载的稿件都会明确标注作者和来源,若标注有误,请联系主编QQ:419297645

您的赞赏,是对我创作的最大鼓励。

评论( 0

登录后参与评论
加载中