数据分析必备的三大能力体系

GrowingIO
12 评论 113376 浏览 625 收藏 13 分钟
🔗 技术知识、行业知识、业务知识等,都是B端产品经理需要了解和掌握的领域相关的知识,有助于进行产品方案设计和评估

这篇文章从整体框架出发,介绍了数据分析的三大层次。包括对数据分析的整体理解和认识,做数据分析的科学方法,以及数据分析相关的工具介绍。

数据分析目前在国内互联网圈的受重视程度在逐步提升,但是问题也很突出:

  1. 大家对于数据分析的认知和理解支离破碎,缺乏一个整体的、系统的思维框架;
  2. 大家的视野更多局限在数据报表、BI 系统、广告监测等领域,对于数据以及数据分析其实是缺乏深层次洞察的。

这篇文章就从整体框架出发,介绍一下数据分析的三大层次。包括对数据分析的整体理解和认识,做数据分析的科学方法,以及数据分析相关的工具介绍。

一、数据分析价值观

如何让数据分析真正发挥价值?我认为必须在价值认同、工作定位和商业模式三点上取得突破。

(一)数据分析的价值认同

做好数据分析,首先要认同数据的意义和价值。一个不认同数据、对数据分析的意义缺乏理解的人是很难做好这个工作的。放到一个企业里面,企业的 CEO 及管理层必须高度重视和理解数据分析的价值。你想一下,如果老板都不认可数据分析的价值,那么数据相关的项目在企业里面还能推得动吗?然后,企业内部还需要有数据驱动的公司文化。

如果大家宁可拍脑袋做决定也不相信数据分析师的建议,那么数据分析往往是事倍功半、走一下形式而已,反之则是事半功倍。

(二)数据分析的工作定位

做好数据分析,要对数据分析的价值有清楚的定位。既不要神化数据分析,把它当做万能钥匙;也不要轻易否定数据分析的意义,弃之不用。数据分析应该对业务有实际的指导意义,而不应该流于形式,沦为单纯的 “取数”、“做表”、“写报告”。在 LinkedIn 那么多年的工作时间里面,我们对数据分析的工作早已有了清晰的定位:利用(大)数据分析为所有职场人员作出迅捷、高质、高效的决策,提供具有指导意义的洞察和可规模化的解决方案

当时我们还采用了一套 EOI 的分析框架,对不同业务的数据分析价值有明确的定位。针对核心任务、战略任务和风险任务,我们认为数据分析应该分别起到助力(Empower)、优化(Optimize)、创新(Innovate)的三大作用。

(三)数据分析的商业模式

做好数据分析,要对企业的商业模式非常了解。数据分析的最终目的还是服务于企业的增长目标,所以务必要对行业背景、业务含义、产品和用户有着深刻的认知。

还是以 LinkedIn 为例,作为企业增长的重要环节,LinkedIn 在产品设计之初就优先考虑到了数据的价值模式。首先是用户的增长、使用和活跃,然后产生大量的数据,最后根据数据进行业务变现(企业广告、企业招聘、高级账号等)和用户增长,从而不断良性循环。

只有认可分析价值、明确工作定位、深谙商业模式,数据分析才能走在正确的轨道上。

二、数据分析方法论

(一)数据分析的框架

在整个数据分析框架中,用户是数据的来源,也是数据分析最终要服务的对象。整个分析框架可以分为四大层次,依次是:数据规划、数据采集、数据分析和数据决策。

从用户、业务系统,到数据采集平台、ETL、数据仓库, 再到分析、BI、DM、AI、洞察,再到决策、行为、价值,最终回到用户。

上面整个分析框架中,越底层的占用的时间和精力越多,而顶层的耗时较少。从产生的价值来看,越底层的产生的价值越低,越顶层的产生的价值越高。大家想一下就会理解,做数据分析的过程大多时间是耗费在数据采集、清理、转换等脏活累活上面,最有价值的分析和决策部分往往耗时很少。

因此,大家做数据分析应该把重心放在最有价值的分析和决策两个层面上,并且尽可能使用工具实现底层的自动化操作。

(二)数据分析的方法论

数据分析应该帮助我们不断优化营销、运营、产品、工程,驱动企业和用户的增长,而不是为了分析而分析。在这里我给大家介绍两个方法论,一个是业务上的 AARRR 模型,另一个是分析上的学习引擎。

AARRR 是著名的 Growth Hacker (增长黑客)海盗法则,依序分别是 Acquisition(获取用户)、Activation(激发活跃)、Retention(提高留存)、Revenue(增加收入)和 Referral(推荐传播)的首字母简称,覆盖用户整个生命周期。我们在进行数据分析的时候,应该考虑用户正处于 AARRR 模型的哪个部分、关键数据指标是什么、对应的分析方法又是什么?

“ 学习引擎 ” 是《精益创业》一书中提倡的精益化运营方式,在硅谷被大小企业广泛采纳。当我们有一个想法的时候,可以采用最简可行化产品(MVP)的方式将其构建(Build)出来。产品上线后,我们需要衡量(Measure)用户和市场的反应。通过分析收集到的数据,我们可以验证或者推翻我们之前的想法,从而不断学习(Learn)和优化。

(三)数据分析的具体方法

这篇文章的目的不是介绍具体的分析方法,而是为了让大家对整个数据分析能力体系有一个系统的认知,所以我就不对每一个方法进行具体的阐述。

懂得每一种方法的原理是一回事,在业务中灵活应用又是另外一回事。以产品经理为例,可以把“用户行为 – 数据分析 -产品设计 & 优化 ”三位归于一体,在不断的实践应用中掌握各种分析方法的精髓和要义。数据来源于用户,数据分析的最终目的也是服务于企业和用户。做数据分析之前,一定要清晰业务目的和数据指标,选择科学的分析方法,用数据来指导产品和用户增长。

三、数据分析工具篇

(一)为什么工具那么重要?

“ 工欲善其事,必先利其器 ” !

整个数据框架下面的部分可能花费了 80% 的时间和精力,但是产生了不到 20% 的价值。大家都在搭建数据采集平台、都在写代码埋点、都在做 ETL、都在建 BI 系统,哪里还有更多的时间和人力来做 Analytics 和 Insight 。

以前市面上没有好的数据分析工具,大家都只能自己去部署很多的系统、建立很多的机制,甚至雇佣三四个团队去做一件事。

今天市面上有很多好的工具来帮助我们进行数据分析,为了节省时间、资源(特别是成长型企业),大家完全没有必要内部建造一套分析系统,应该擅用好的工具来帮助自己做数据分析。

(二)选择合适的分析工具

选择什么样的分析工具,跟你的工作岗位、分析场景息息相关。每种场景都有若干种工具可以选择,有些工具也可以用于多种分析场景,关键在于你对工具的熟悉和理解。

Excel 绝对是最基本、最常见的数据分析工具了,对于数据量较小的情况,无论是数据处理、数据可视化还是一些统计分析都能支持。一旦数据量大了,这个时候就需要大型的数据库来支持。

市场营销人员需要对广告投放进行数据分析,网站流量监测是他们关注的重点。产品和运营重点关注用户行为和产品使用,用户行为数据分析工具是他们的首选。

以前大家只关注业务数据,然而这些结果型的数据并不能告诉他们中间发生了什么、为什么发生;现在大家越来越关注精细化运营、对用户行为数据的需求也越来越高,这也是我回国创立 GrowingIO 的原因。

如果你能懂一些 R 和 Python,在数据建模、统计分析、数据科学的方向上有所发展,那么你的数据分析水平就更上一层楼了。

上面说的这三点构成了数据分析的能力体系。只有认同数据分析的价值、掌握数据分析的方法并且灵活应用数据分析工具,才能真正做好数据分析。

本文根据张溪梦演讲内容整理编辑。

 

作者:张溪梦,GrowingIO 创始人 & CEO

本文节选自 GrowingIO 2017 年第 3 期电子书《产品经理数据分析手册》

本文由 @GrowingIO 原创发布于人人都是产品经理。未经许可,禁止转载。

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 一句话总结:数据分析就找我们家产品

    来自天津 回复
  2. 对于作者(GrowingIO)来说,只说了一句话:今天市面上有很多好的工具来帮助我们进行数据分析,为了节省时间、资源(特别是成长型企业),大家完全没有必要内部建造一套分析系统,应该擅用好的工具来帮助自己做数据分析。

    所以,大家都来买我GrowingIO吧,不用自己搭建数据平台

    来自广东 回复
    1. +1

      来自浙江 回复
  3. 看到最后才发现是个广告。框架讲的不错,但是没有细讲,没有干货。

    来自福建 回复
  4. 👍文章非常棒。
    只是有一点不太明白:核心任务、战略任务、风险任务,可以在通俗的说一下吗,没有理解。

    来自北京 回复
  5. 有点像是数据分析课的索引,讲了个不错的框架。

    来自上海 回复
  6. 蜻蜓点水式的论述,如果每一个部分能再深入一下就好了。更像是一个数据分析思维的地图,不跟你讲的很详细,而是需要阅读者自己按图索骥地查阅和实践。当然,光文中的各种概念就够初学者好好找相关文章研究一阵了

    来自北京 回复
    1. 是的

      来自菲律宾 回复
    2. 目的是让你产生疑问,从而咨询他们哈哈哈

      来自广东 回复
  7. 切实受教了……

    来自山东 回复
  8. 不错

    来自上海 回复
  9. 数据分析的方法论学习,超赞

    来自广东 回复
专题
87740人已学习18篇文章
沉住气,学做事,更要学会做人。
专题
15685人已学习12篇文章
本专题的文章分享了交互设计文档的撰写指南。
专题
15426人已学习12篇文章
本专题的文章分享了用户精细化运营---用户分群的建立指南。
专题
13223人已学习12篇文章
OTA,在线旅游(Online Travel Agency)指“旅游消费者通过网络向旅游服务提供商预定旅游产品或服务,并通过网上支付或者线下付费。
专题
112939人已学习29篇文章
透过别人的项目总结,学习项目管理项目设计项目流程经验。
专题
19516人已学习13篇文章
画像标签是由数据标签经过分析、加工处理,形成的更加抽象、易于理解的复合标签。本专题的文章分享了如何设计用户标签体系。