推荐策略产品经理实操(二):用户负反馈数据收集

4 评论 12922 浏览 56 收藏 7 分钟

编辑导读:作为一个策略产品经理,要对重视用户的反馈数据,尤其是负反馈。负反馈是比正反馈更有用的信息,作为用户的主动反馈行为,其可信度更高。本文作者从自身工作经验出发,对用户负反馈数据收集展开分析,希望对你有帮助。

(以下数据均进行脱敏处理,不涉及公司业务真实数据)

推荐系统都是基于用户的静态特征和动态特征来进行内容推荐,静态特征基本上是永久或长期不会发生变化的特征,例如用户年龄、性别、职业等;动态特征则和用户当前场景下的兴趣爱好息息相关,动态特征又分为正反馈和负反馈。正反馈就是用户根据推荐系统推送的内容进行点击、消费时间等一系列行为,而负反馈则是比正反馈更有用的信息,作为用户的主动反馈行为,其可信度更高,应该被重视。

01 背景

产品的主要用户基本上为小孩,存在非小孩用户的推荐列表会受到主流用户爱好干扰的现状,尤其是在开学季,非小孩用户的列表和节假日存在巨大的差异,因此有必要在优化推荐系统的同时新增用户负反馈功能。

(这里主要是讲收集数据之前的工作,后面还会总结收集的数据如何使用)

02 项目过程

1. 竞品分析

收集数据之前,会发现产品目前并没有这个功能可以协助用户进行反馈,还是需要从头开始做,因此,我参照了几个用户量比较大的产品,并非是真正的竞品,但也能学到一些东西;经常使用信息流产品的人应该会很熟悉今日头条;二次元深度患者则多使用b站;数码生鲜产品爱好者则多会了解京东一些。

这三个产品,刚好都有做负反馈功能,如下图(依次是12京东,34今日头条,5b站):

会发现,虽然只是一个小小的反馈功能,每个产品却各有特色:资讯类产品负反馈因为涉及到用户在信息流的实地感受,因此负反馈功能做的较为复杂,便于更精准的掌握用户的喜好;b站则更注重用户的心里感受,会做出及时反应以及用户安抚,但无过多选项;电商类产品负反馈则相对简单粗暴,不喜欢就干掉,方便快捷;三者各有特点,需要从我现在的实际需求出发,取长补短。

我目前的需求仅停留在数据收集层面,因此会倾向于较为简单粗暴的方式,但考虑到游戏图标较小的现状,采取了长按触发的情况;

2. 数据预估

做一个功能之前,还有一点较为重要,也容易被大家忽视。那就是功能的覆盖率(可以简单的理解为功能的使用人数比例),这一点是很有必要做的,因为这决定了这个功能产生好或不好的数据影响波动范围。

我这里的预估方式,是选取了之前的一个用户给游戏打星级分数的覆盖率,预估了覆盖率(最后的覆盖率,和预估的数据几乎无差异)。

3. 功能设计

虽然负反馈功能覆盖率我预估在4%-5%左右,不会对大盘数据产生什么显著影响,但还是需要谨慎,因此对功能的生效条件做了限制,功能根据用户活跃天数灵活可控,配置开关,用户引导次数灵活可配置,避免新手引导过多导致数据变差;

4. 需求评审与测试

需求文档需要考虑到很多层面:

  • 客户端的开发逻辑、是否存在不能实现的需求点;
  • 实验的结果预估,数据变差的下一步优化需求预估,尽量做到最好;
  • 产品自测的时候哪些地方需要格外注意;
  • 数据埋点设计,需要以需求的最终目的为导向,进行埋点设计,不设计多埋点浪费资源,也不会缺少重要埋点;

5. AB test

功能上线后开实验验证数据效果,实验结果也基本在掌握之中,且和预估的结果差不多——新用户数据有微微下降,推测是新手引导过多,因此在后期数据收集的时候灵活配置了实验,新用户功能生效但不引导;

6. 总结闭环

实验结束需要完善实验报告进行项目闭环,且需求也达到了之前最初的目的:在用户核心数据不变的前提下,收集用户负反馈数据。

03 项目复盘

1)目光长远与数据收集

负反馈是一个需要长期维护的工作。在覆盖率和数据量比较少的情况下几乎起不了什么作用,也不能左右大盘的数据,但也是需求去做的,慢慢的积累,负反馈结果是比用户正反馈更加真实准确的训练模型的正例样本;

2)数据预测与功能类比

覆盖率预估。功能设计之前,要明确功能的使用覆盖率,如何预估其实是很简单的,需要类比其他类似功能,进行数据查询,就能大概的预估其带来的数据收益;

3)结果预测与需求灵活

需求在做之前,一定要考虑和预估到每一步的结果以及接下来的应对方法,这样才会避免反复做同一件事,需要有好的思考方式和做事习惯。

加油,打工人!

本文由 @王珂 原创发布于人人都是产品经理,未经作者许可,禁止转载。

题图来自Unsplash,基于CC0协议。

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. B端电网能源行业转广告策略好转吗,求指导

    来自陕西 回复
  2. 上点心,老哥。

    来自广东 回复
  3. 您好,可以加微信交流吗,我也是做推荐的

    回复
    1. 哈喽,可以认识下大佬吗?想转广告策略产品

      来自陕西 回复
专题
12999人已学习12篇文章
营销数字化与数字化营销,是两个不同的概念,很多容易混淆。本专题的文章分享了关于营销数字化的解读。
专题
61116人已学习12篇文章
业务流程图是最常见的图表之一,能看懂读懂是必修课,能绘制便是非常重要的选修课。
专题
18215人已学习15篇文章
促销的规则多样,对提高客单价和客单量有很大帮助。本专题的文章提供了促销系统设计指南。
专题
13357人已学习13篇文章
本专题的文章分享了产品经理数据分析方法论。
专题
14299人已学习13篇文章
本专题的文章分析了用户运营策略的案例,为如何做用户运营策略提供了思路。
专题
13361人已学习12篇文章
随着“新基建”的号角,新技术不断涌现,数字化转型成了成了大多数企业的迫切需求。本专题的文章分享了如何做服务数字化转型。