案例拆解:数据分析如何有效驱动产品迭代

15天0基础极速入门数据分析,掌握一套数据分析流程和方法,学完就能写一份数据报告!了解一下>>

本文作者通过案例拆解,来给大家讲讲数据分析如何有效驱动产品迭代?enjoy~

从产品论的角度而言,一款产品从0到1的建立,需要经历五层设计(战略层、范围层、结构层、框架层、表现层)。而从数据分析的角度而言,数据分析由浅至深也分为5层(角色扮演、业务指标、现成模型、公司战略、行业发展)。无论从产品论的角度又或者是数据分析的角度,最终的本质是服务于商业模式。当然对于政府等公共性质的app而言,是无需商业模式的。

1. 产品基本信息

1.1 产品名称

xx市数据信访便民投诉平台app,后面简称为“信访app”。

1.2 产品定位

此次信访app的产品定位为工具性产品,主要是方便信访人民,在app上进行信访业务办理,包括信访投诉、进度查询、预约等一系列的信访服务。

1.3 产品受众

我们建设的是一个数据信访平台,此平台可以支持网上信访和线下信访,所有的数据都会进入到我们的平台,因此我们可以对信访受众进行全量分析。

产品受众是所有潜在或者现实对信访有需求的受众,从前期的上访情况来看,普遍的上访群众的年龄在30~60岁左右。

2.4 产品功能

已上线运行的信访app的功能包括:信访投诉;政策、福利等咨询;领导包案预约;业务办理督办、催办;社会民意征集;业务办理进度查询;业务办理结果、工作人员评价。

二、面临的问题

国家局在2018年6月份下达通知,要求各个省市的每月综合网上信访率需要达到60%以上,并且会纳入到信访工作考核指标中,而在2018年的6月份,我们后台统计,xx市的网上信访率为18.94%(总信访量264件,网上信访量50件)。

因此,我们需要配合xx市信访局完成这一指标。(网上信访率=手机app信访登记量/信访信访登记总量,当前的网上信访的主要渠道是app投诉)

三、分析思路

从两个角度进行分析,针对产品的角度而言,产品的定位(战略层)是正确的(针对信访群众进行上访),产品的需求功能(范围层)也是正确的(可以满足信访群众进行信访登记),那么就只需从产品的结构层、框架层、表现层来进行分析。

而从数据分析的角度而言,主要是从业务指标的角度进行分析(即当前的网上信访率达不到要求,需要分析出业务指标无法达到要求的原因,并给出解决方案)。

3.1 排除数据噪音

想必大家在初中都学习过控制变量法,通过控制变量来观察因变量的影响因素。同理,我们在进行数据分析的时候也需要采用类似的方法,首先就要排出数据噪音的干扰。对于当前的分析角度而言,我们是要通过数据分析来驱动产品迭代,那么产品的运营数据对于产品的使用数据而言就是噪音数据。

产品的运营数据就是产品的安装量、注册人数、app使用情况、app活跃度等数据。结合信访app的运营数据以及6月份的信访投诉的数据进行分析,来排出数据噪音。

如下图所示为6月份的xx市信访投诉数据展示:

通过业务后台数据分析可以知道6月份信访人数为264人,其中通过手机app信访的有50人,线下信访的有214人(其中有132人是已注册了信访app)。因此我们得出的数据结论是,理论上网上信访率可以达到68.94%(计算方式=(网上信访人数+已注册人数)/信访总人数)。

因此可以说明,我们的数据在客观条件下是能够满足业务指标要求的,这样就排除了因为产品运营情况的不到位,而导致的客观硬性条件下不能达到业务指标要求。

接下来就可以从产品的使用数据,来进行分析网上信访率不达标的影响因素。

3.2 业务指标角度

即从业务指标的达成路径进行分析,我们可以知道业务指标的达成路径,如下图。

我们会分两条路径统计6月份这个期间的app的启动次数、app的注册次数、app登录次数、使用投诉办理功能的次数、提交信访诉求的次数。

通过事件转化率分析,这7个步骤的转化率,分别表示的是:

  • 路径1表示app的启动之后,直接登录app的概率;
  • 路径2表示在直接登录app之后,使用投诉办理功能的概率;
  • 路径3表示在直接登录app的前提下,进入投诉办理功能之后,完成信访诉求提交的概率;
  • 路径4表示在app的启动之后,注册app的概率;
  • 路径5表示在注册之后,直接登录app的概率;
  • 路径6表示在注册之后直接登录的前提下,使用投诉办理功能的概率;
  • 路径7表示在注册之后直接登录的前提下,进入投诉办理功能之后,完成信访诉求提交的概率。

(1)建立数据指标

为了验证数据,我们首先通过自定义事件,定义8类事件,分别为“app启动量、app注册量、app登录量(无注册)、app登录量(有注册)、app使用信访投诉功能量(无注册)、app使用信访投诉功能量(有注册)、网上信访总量(无注册)、网上信访总量(有注册)”。

然后通过事件转化率,我们定义了两类类转化率,分别是“有注册的业务路径、无注册的业务路径”。

(2)数据结果

统计出来的6月份两条路径的事件,转化率如下:

(3)数据分析结论

6月份,路径上从app启动—>app使用信访投诉功能的转化率较低,仅有30%左右。这可能跟信访投诉具有一次性的特性,而查询、督办等功能具有多次操作的特性相关。

6月份,路径上从app使用信访投诉功能—>网上信访的综合转化率则是非常低,仅有47%。但其中有注册的业务路径转化率会高一些,这可能跟信访群众在信访局有工作人员协助的因素导致。但也足以说明,app上的信访投诉功能存在一定的问题,需要进行优化。

(4)数据结论的再次分析确定

对6月份的数据,特意挑选出线下投诉但已注册过app的132人,即这132人的网上信访人数为0。根据业务指标达成路径上的转化情况进行用户分组,选择时间为2018年6月份,我们将人群分为:线下信访_已注册_登录app、线下信访_已注册_app使用信访投诉功能,两类人群。

最终我们会看到分析出来的数据,如下图展示:

综上可以确认两点问题:

  1. 数据分析的结论是正确的,信访投诉功能存在问题;
  2. 如果117人都是愿意使用app进行投诉的,如果解决投诉功能的问题,那么有可以使得网上信访率达到63%左右,满足指标要求。

3.3 产品角度

从业务指标的角度我们发现了app的信访投诉功能存在一定的问题,且信访投诉操作具有操作的一次性特征,因此需要优化,但具体如何优化,优化的方向还无具体的数据支撑。因此,我们需要从产品的角度,结合数据埋点进行分析。

投诉功能的结构层分析:

投诉功能的信息结构,如下图:

上述的路径是完成信访投诉必经的路径,一共涉及4个页面,因此对每一个页面进行数据埋点:进入此页面的计数。

投诉功能的每个页面的框架层分析:

结构层的信息页面路径是否能够走完,需要对每个页面的框架进行分析,用于分析此页面的识别度和可操作性以及下一个入口的便捷性。因此可以说结构层和框架层是息息相关的,那么根据框架层的特性,我们从时间维度上,对每个页面进行数据埋点:在此页面上停留的时长。

(1)建立数据指标

首先通过自定义事件,将各个页面的操作次数都统计出来。通过漏斗分析,查看每个页面的转化率情况。

(2)数据结果

统计出来的6月份中的页面转化率情况如下:

(3)数据分析结论

  • 6月份,可以看到填写信访诉求的完成情况很低,仅有38%,说明填写信访诉求页面需要亟需优化。
  • 6月份,每一个页面都存在一定的转化损耗,所以需要从产品和业务的角度考虑缩短路径。

(4)改进方案

产品是针对受众,因此支撑改进方案的一定是要落地到用户画像上,由于信访的特殊性。因此,此次仅需要对年龄进行刻画即可。

1)改进方案的用户画像

通过用户分群功能,根据信访人群的年龄进行划分,对截止到6月份为止已注册的人员进行分群。用户分群的数据如下图所示:

可以知道30~50岁的人群,占据了注册人数的76.88%,是绝大多数的人,由此可见产品的优化方案,主要是针对这个年龄段的人群。

2)改进方案的建议

根据数据分析结论、产品的分析结论以及用户画像我们针对产品,提出了如下的优化建议:

  • 填写上访人信息页面取消,默认统一获取当前登录的用户信息(姓名、身份证号、居住地址、联系方式),并将身份证号、居住地址等个人信息,融入到注册环节进行填写。(在信访的业务上,也是支持多人上访,但仅有一人作代表的情况)
  • 选择信访单位此页面取消,采用后台默认统一将信访件分配到xx市信访局,再由信访局发送到属地单位进行办理。
  • 填写信访诉求的页面,采用多种方式,代替仅限文字输入的方式,比如:语音输入、附件文本上传、图片上传、视频上传这四类方式。在业务上,信访办理也是需要将app投诉内容转录到办案系统,所以这四类的方式都可行。

四、效果观察

4.1 效果数据

通过自定义报表,将网上信访率进行持续跟踪,如下图是7月份和8月份的数据。而选取2个月的时间作为观察的长度,是因为信访的数量本来就属于弱需求,平均每个月的信访量也就800件左右,而同时国家局要求的指标只要在12月底之前完成即可。

(此处要提一个数据,就是截止到6月份,已注册app的信访群众达到了1276人,7月份新增注册人数70人,8月份新增注册人数100人)

由此可见,我们的改进效果是有成效的,说明通过这一套数据分析下来,的确是在一定程度上解决了产品的问题,但却还没有达到业务指标(60%)的要求。

4.2 效果反思

产品已经优化了,且在宏观的结果有一定的成效,但是还是需要数据支撑,去看产品优化带来的具体成效。

重复采用漏斗分析的方法,去分析页面的转化率,如下图是7月和8月的页面转化率情况:

总体转化率直接从12.74%提升到60.83%,总体转化率有了质的提升,而且完成信访投诉的转化率从25.38%直接提升到了85%左右,也完全证明了我们的数据分析给出的解决方案也是正确的。

整理思路,依然还没有达到指标。我们发现其实先通过业务指标进行分析找到路径上的薄弱点,掩盖了产品的两个点,分别是注册(产品功能)和用户留存(产品使用)。而这个点只能从产品的角度才能发现。

4.3 迭代数据分析优化产品

(1)注册(产品功能)

通过漏斗分析产品的注册页面路径转化分析,我们统计出7也和8月的注册页面的路径转化情况,如下图所示:

基于如上的数据,结合产品的方法论,我们给出注册/登录这套操作进如下方式的优化:

  1. 注册和登录都采用手机号码+验证码的方式,进行注册和登录,替代账户基本信息填写(内容包括:用户名、电话、密码、验证码);
  2. 个人基本信息填写,采用手动输入和拍摄证件照两种方式进行填写,但优先推荐证件照上传的方式。

(2)用户留存(产品使用)

通过自定义留存的功能,我们可以定义,在每个月中,已注册app的信访群众的留存情况。(留存率=当月使用app信访功能的人数/当月信访的总人数中已注册app的人数)

通过计算,可以知道每个月的回访情况如何,如下图所示:

基于如上数据,加入一个消息引导提醒“app信访数据概况”,这条信息中包含“网上信访操作事件、网上信访办理效率、网上信访比例、网上信访操作改善功能点”这四个维度的提醒,用于提高留存率。

4.4 迭代优化持续跟踪效果

我们首先跟踪9月份注册的页面转化率优化情况,如下图:

通过自定义留存,我们知道9月份信访的留存率情况,如下图:

我们再次跟踪9月份网上信访率情况,如下图:

五、总结

最后,还是需要强调一次,通过这一套的数据分析和优化,我们耗时3个月达成了国家局要求的网上信访的指标(60%),另外数据分析当然肯定不是一个月才进行一次分析,而是至少每周,甚至每天进行分析,跟踪变化情况。

数据分析不能从一个角度进行分析,要结合多个维度,尤其要从产品的角度思考数据分析方法的完整性。同时需要能够基于已分析出的数据,进行深入挖掘,才能找到问题的根本原因,并能够明确地给出解决方案。

写在最后

对于产品的表现层的分析,可以结合两方面进行分析:

  • 一方面是页面的停留时间,每个表单的操作时长进行分析;
  • 另外一个方面是结合用户画像。

#专栏作家#

萧羽,人人都是产品经理专栏作家。

本文原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议

给作者打赏,鼓励TA抓紧创作!
评论
欢迎留言讨论~!
  1. 你好呀,从这篇文章里获益匪浅,可以申请转载到公众号未明学院吗?非常感谢 !

    回复
    1. 可以的。

      回复
  2. 优秀 学习了

    回复
  3. 很强的指导性,

    回复
  4. 厉害厉害,展示了实例

    回复
  5. 厉害了

    回复
  6. 写的不错

    回复