如何从0到1设计搭建AI售前营销机器人?

3 评论 7531 浏览 50 收藏 37 分钟
🔗 B端产品经理需要进行售前演示、方案定制、合同签订等,而C端产品经理需要进行活动策划、内容运营、用户激励等

AI目前在不同行业有各自的细分应用。对话机器人,针对不同的业务场景,有每个领域的细分落地。由此,对于对话机器人的整体设计思路也不同。

笔者目前在国内一家AI厂商从事AI PM的工作,产品主要面对的主要是某行业的售前营销场景业务。不同于市面上主流的售后机器人的对话产品,该行业的售前机器人有其特殊的行业特性与对话产品需求点。根据以往的实践与归纳总结的AI对话设计方法论,本文通过阐释基于该行业的对话产品设计流程与思路,拆解从0到1搭建售前营销机器人的过程。

以下是本文的思路框架与概览。

一、行业背景概况

在介绍对话产品设计之前,先介绍一下行业的业务背景。

笔者所面对的行业,为某垂直领域的行业。该行业中,又有更进一步的行业细分,分为行业1,行业2,行业3,等等。行业间有如下特点:

  • 整个大行业有共通的业务特性、业务场景与用户诉求点;
  • 细分行业间,有部分共同的行业知识,但每个细分行业,又有各自单独的行业知识;
  • 人工客服接待对话的场景,细分行业间有共通的对话技巧与思路,但同时每个细分行业又有各自的独特性;
  • 不同的细分行业,售前对话思路有所差异。根据对售前客服接待的难易程度,可将对话复杂度分为:高、中、低 3个层级。各细分行业的分布占比大致为  高:中:低 =1:7:2;

目前由于业务线处于初步阶段与持续完善阶段,本文先从业务 对话复杂度等级为高 的细分行业为例,具体阐释对话产品设计的流程与思路。

二、对话设计流程

1. 业务分析

业务分析主要是对细分行业的整体情况做分析,目的是为对话产品设计提供对话知识框架和对话设计思路。主要包括2个方向:行业特性分析 和 对话场景分析

1.1 行业特性分析

行业特性分析,指的是对该行业的知识体系做梳理,并对现有人工客服接待的对话访客特征做分析。

1.1.1 知识体系梳理

重要性

每个行业内,都有其独有的知识体系。知识体系分析,对于对话产品设计来说至关重要。它决定了整个对话机器人的应答语料话术库的整体方向与内容,起了方向性的作用。

如何做

一般AI PM需要根据业务需要,与数据工程师配合,进行相关信息的获取与梳理。主要通过以下几种方式:

1)人工对话数据抽取分析

从已有的人工客服接待对话数据中,抽取行业知识框架体系中的关键信息,从而梳理构建行业知识框架。包括不限于实体关键信息的抽取,通过无监督学习的聚类(如K-means聚类等)等方式获取信息分类,等等。

抽取之后的数据,需要进行人工筛选和梳理,输出相应的知识框架结构。

2)用户调研

用户调研的方式是从另一个维度去考量分析行业知识。主要通过与行业专家(通常是客户)做用户访谈的形式来进行。

行业专家是对该行业有深刻理解且有深厚的知识沉淀的专家,TA会对行业有一套抽象归纳的知识结果。这是对1)点中数据抽取方式的有效补充。数据抽取的角度,主要是基于数据特性的归类与抽象,用户调研可从业务角度进行补充和方向调优。避免出现技术实现的数据分析,与业务脱轨、偏离方向的各类情况。

3)其他各方资料信息搜集

资料信息搜集,包括各种网上资料、线下书籍等,作为知识查询的补充。通常在各类的行业领域资讯网会有相应的资料可查询,有必要可安排数据工程师做数据爬虫。但得到的数据也仅供知识框架分析用,若要作为话术语料,则需进一步清洗和筛选。

1.1.2 访客特征分析

笔者在做AI PM之前,做过2年的互联网PM。在做AI产品设计时,其实很多时候都会运用到做互联网设计的方法论,即使实际的工作内容不同,但是思维是一致的。比如访客特征分析下,主要是对进入对话的访客做特征分析,即访客用户画像。目的是为了形成对话产品服务的C端用户的关键信息特征与需求分析,进而做相应的对话设计。

访客特征分析主要对以下几个特征进行分析与归类:

  • 角色
  • 基本信息(性别、年龄、主诉载体、来源渠道)
  • 对话目的(为什么/会怎样/怎么办/可做什么)
  • 表达方式
  • 用户情绪
  • 用户预期
  • 访客留联意愿度

(根据业务需要,会进行标签维度的新增)

访客用户画像的理想方式是通过大数据/深度学习的方式做数据分析,但基于现实情况(产品线人力物力等因素)还未能做到如此精细化,前期我们会通过AI PM与数据工程师配合的方式来实行。

1.1.3 人工对话思路分析

弱人工智能时代,我们基于的假设是,机器人还无法超越人工。人工客服的行为是给机器人的一个目标和方向。所以在这样的假设前提下,我们对于对话机器人的设定主要在于“仿真”,即模拟优秀人工客服对话的方式进行对话。我们通过对优秀人工客服对话语料的分析,提取出对话思路与对话语料,作为机器人答疑和引导的方向和素材。

1.2 对话场景分析

除了做行业特性分析,业务分析另一大重要内容是对话场景分析,旨在确定和拆解访客进入对话的场景,为后续的对话设计做基础准备。

1.2.1 场景划分

主要进行场景的确定,梳理出场景列表。同时分析统计出各场景在该行业对话咨询中的占比,进而统计出,各场景覆盖业务范围。这样我们就可以得到,哪些场景是我们需要重点关注设计的场景,哪些场景是可以无需花太多精力来设计准备。

1.2.2 场景详情分析

场景详情包括:场景访客特征、场景访客问题、场景客服引导思路、场景对话特征 的分析。

  • 场景访客特征:该场景下的访客的访客特征分析,具体分析维度的思路与“1.1.2 访客特征分析” 同,输出结果是该场景的访客特征标签
  • 场景访客问题:该场景下访客问题的统计,基本可以归纳为:为什么/会怎样/怎么办/可做什么;
  • 场景客服引导思路:总结归纳该场景下客服引导思路,包括对话流程思路与话术,作为后续设计的指导素材。

1.2.3 分析方式

分析方式主要为两种:人工对话数据分析用户访谈。基本方式与上文介绍同。值得说明的是,场景详情分析重要性极高,价值主要在于为对话产品设计提供方向和业务参考,保证后续设计和开发的方向不至于走偏,是指导性的调研分析。

2. 机器人产品定义

在了解了行业知识体系框架与优秀人工客服对话思路后,我们对要设计的对话机器人就有了方向和框架性的认知。即:对于我们要设计怎样的机器人,这样的机器人如何去满足业务要求,机器人的能力/功能要达到什么样的程度,有了基本的了解和认知。接下去我们就可以对机器人产品做定义。

机器人产品定义可以分为2部分:机器人人物形象设定机器人能力界定

2.1 机器人人物形象设定

对访客而言,在对话过程中,人工客服/机器人的接待是有人物特性的,体现在对话的多个方面:人物形象、对话语言、对话节奏等等。同时,人物特征对于对话引导效果,是在潜移默化中的,一句话术、一个间隔等,都是人物特征的表征形式。所以需要对机器人做人物形象设定。

主要从以下几个层面:

视觉形象:

主要包括机器人头像、昵称、对话框信息展示交互效果。该行业默认设定的客服是亲切地、富有亲和力的、体贴的等等,可以建立标签来衡量。

人物个性:

主要包括语言风格对话节奏风格

1)语言风格 指的是机器人使用话术的风格,将会贯穿对话始终,涉及后续话术库的建立和审核,需根据话术风格建立标准;

2)对话节奏风格 指的是在对话过程中,机器人发送话术的节奏,以及在等待应答阶段的对话交互。机器人发送话术的节奏,涉及到对话序列策略的设计,比如每间隔N秒发送一句话术,或者根据话术长度决定发送等待时长。

当然,具体的设计涉及诸多异常情况的设计需要考虑,如访客在等待时间内连续发送多条话术的处理等待。等待应答阶段的对话交互,有针对性的设计会让访客对话体验更像是在跟真人对话一样,如我们会在访客等待机器人发送话术的间隔时间内,在前端显示“正在输入…”的提示,让“仿真”更加“仿真”。

2.2 机器人能力界定

根据机器人在对话中所需承担的业务价值,可将机器人进行能力拆分。在互联网产品设计中,PM需要根据业务需求规划产品功能,并做功能拆解。AI PM也一样,根据业务需求划定机器人的能力边界,并做能力拆分

我们会先划定,基于业务背景,结合现有的AI技术,机器人需要达到怎样的能力,才能满足业务需求。需要实现什么能力?什么能力是必要的;什么能力是选要的;什么能力是没有必要的。

根据划定的能力范围,我们又会根据场景,拆解细分的机器人能力。比如,场景1中,机器人的答疑能力、引导能力、暖和对话能力的细分拆解;场景2中……需穷举所有场景的机器人所有能力,可定量的需定量描述;不可定量的需定性描述,并附上相应的评估指标(若无指标,需附上评估指标策略建议)。

机器人能力的界定,可以为整个对话产品的研发测试工作起到关键作用。换言之,即需求定义明确且可量化。对话产品的几个特点就是,不好评估、衡量主观性大,对话未能覆盖的业务范围会比预期更大。在前期作用能力界定是非常重要的,同时也避免开发团队内部与外部沟通对接、与客户对接的诸多问题。机器人能力的界定,也为产品设计开发测试完成之后的产品验收做基础准备。

3. 机器人框架确定

在该行业中,访客一般是带着自身的问题/疑惑进入到对话的(除了骚扰的访客),即我们可以默认访客都是带着目的进入对话的(可参见上文 访客特征分析),这同时也是我们的 任务型对话 所要解决的问题。

所以我们根据访客的场景主题和在该场景下的访客各类意图,来框定机器人的对话内容框架。

  • 主题:根据对话场景分析的结果,可将对话主题进行拆分。(注:不同于NLP行业内主流的任务型对话机器人,笔者产品所面对的行业,不同的主题间界限较不明确,且存在众多主题跳转的情况。这对于后续对话流程的设计,是一大考验难点。)主题确定和拆分主要考虑几个点:主题覆盖率、主题颗粒度、主题下答疑与引导的预设。同时,在完成这一步后,需要确定和撰写主题标注规范,让后续的数据标注与对话测试,都有一个参照标准
  • 意图:意图是每个对话场景主题下,访客的对话目的。我们会汇总所有场景下的意图,做整理和分析,并框定对话中的意图。作为NLU的主要成分,机器人识别的意图在对话中的角色至关重要,将主导对话的进展聊天的方向。而意图的框定又是其根源的决策,所以需要考虑诸多影响因素。与主题的方法类似,意图确定和拆分也会考虑相同的几个点:主题覆盖率、主题颗粒度、主题下答疑与引导的预设。同时,也会确定和撰写意图标注规范,方法同上。

4. 对话产品设计与开发

做了前期的分析与准备之后,下一步就进入了从0到1搭建售前机器人的核心环节:对话产品设计与开发。在阐释具体的方法论之前,我们先看机器人的对话整体框架是如何的,相信这张图在诸多文章中都出现过:

这也是当前NLP领域对话机器人通用的处理逻辑,即:

  • NLU(自然语言理解):访客输入信息,通过NLU的解析,将自然语言转化为机器人可理解的语言。
  • DM(对话管理):NLU的识别结果,通过对话管理的处理,输出相应的信息回应。对话管理的过程,可理解为机器人的“脑处理”机制,类比于人类的大脑。
  • NLG(自然语言生成):根据对话管理处理的结果,进行语言生成。这部分的处理,目前我们暂时用话术库话术直接调用的方式来代替,未做语言生成的处理。

区别于互联网产品的设计与开发,对话机器人的设计,主要在于对话策略的设计。产品功能的载体,如对话界面展示,交互形式等,在对话产品设计中,只占一小部分的工作内容。所以在某种意义上,对话产品的设计,与“策略产品经理”的工作思维较为相像。

在对话产品设计中,AI PM不仅要了解业务,同时要对AI技术有充分的了解认知,需要知道AI技术的实现效果边界,以及AI技术实现的难度等等。通常需要与算法工程师配合,在对话产品设计与开发间,做尽可能多的无缝衔接。

4.1 NLU(自然语言理解)设计

NLU的设计,主要由AI PM主导对话需求和效果要求,实现层面由算法工程师负责。值得一提的是,现有的人工智能的核心虽然是各类AI算法,但是算法并不能解决所有问题。实际上在应用中,AI算法在对话产品中可能占比不到50%的功能实现,其他的部分需要算法之外的策略设计来实现,比如人为设定各式各样的规则处理等待。

基于行业业务形态,NLU的设计主要分为3部分:主题识别设计、意图识别设计、实体识别设计

4.1.1 主题识别设计

在实际对话中,对话主题常常因为访客提供信息的变化,需发生相应的主题变化。基于现有的AI算法水平(还未到达会话级识别的能力),在主题识别上,需做一套可控的完备的规则进行相应的主题识别。

主题识别的设计,主要包括 主题映射设计 与 主题跳转设计 

  • 第一步,AI PM需让数据工程师抽取并整理出各实体与主题之间的关系映射表,并做相应的审核;
  • 第二步,基于关系映射表,设计一套主题映射规则。基于对话业务,进行映射权重关系、分值计算、主题跳转触发机制的设计。

主题识别的机制,在算法能力不成熟的情况,主要通过人工制定规则的方式来实现。在效果上,可以暂时达到相应的业务需求,但是,随着业务复杂度上升,规则的局限性便会暴露出来。

规则的优势在于,可量化、可控,且容易直接地达到人的预期。但是劣势同样也明显,规则不具有泛化能力,规则覆盖不到的范围,基本上属于“人工智障”的范畴。并且,一旦规则越来越多后,规则间就会出现重叠、互斥等问题,会超出预想的结果预期。同时这也为后面的异常流程设计、兜底话术等的设计,又提高了难度要求。

4.1.2 意图识别设计

意图识别方面,对AI PM来说,主要是做意图识别规则的设计,体现在与算法模型训练的结合上。如:算法识别结果是单意图 or 多意图,识别优先级如何确定,识别结果如何使用,等等。相应的规则需确定并落成文档,方便在后续的对话流程设计中使用。

同时,意图识别的模型训练,目前主要使用的是有监督学习的算法,需要数据标注团队进行数据的标注,给到算法模型训练。所以在意图确认后,就需要有意图标注规范,目前由AI PM根据业务来撰写。

当算法模型训练完成后,AI PM需要进行验收,需要关注几个AI基础指标:P值(准确率)、R值(召回率)、F1值。当然,单纯的技术指标并不能完全说明对话效果,还需在后续的对话测试中,验证对话的体验效果。

4.1.3 实体识别设计

实体指的是访客发送信息中抽取的有实际意义的信息,基本可以代表信息传递的有价值内容。算法工程师会根据行业特征,抽取所有细分行业中通用的实体信息,并做相应的 实体对齐(归一化)。

举个例子,比如实体“电话号码”,其他的表述方式如“手机号”、“联系方式”、“手机号码”等等多种表述方式,都会归一化为“电话号码”,这样可提高机器人识别的泛化能力,而不是仅限于“关键词”。

AI PM的职责是审核实体列表与实体归一化结果。通常来讲,技术实现的只是基于数据特征的抽象,可能符合/不符合业务需求。笔者的做法是,找行业专家审核一遍训练结果,让行业专家通过专业角度来判别与提供建议,并进行相应的调整优化。

同样的,实体识别模型训练后,我们也会关注几个AI基础指标:P值(准确率)、R值(召回率)、F1值,来衡量模型训练的效果。

4.2 DM(对话管理)设计

对话管理是机器人的“大脑”,是机器人行为的处理枢纽,可见其在对话机器人中的核心地位。对话管理主要分为DP(对话策略)设计 和 DST(对话状态追踪)设计。

4.2.1 DP(对话策略)设计

DP(对话策略)即机器人的对话逻辑处理机制,也就是机器人如何利用识别到的访客对话信息,做机器人的应答逻辑处理。在DP中,包含大量的流程逻辑处理,以及话术库调用机制。

4.2.1.1 对话流程框架

设计初期,需要构建对话流程的总体框架。包括几大功能模块,以及模块间是如何的逻辑处理方式。一般输出结果为对话逻辑流程图。当然,这需要与应用层开发工程师沟通协商实际实现难度与效果。

4.2.1.2 对话主功能模块

对于该行业对话机器人来讲,对话主功能模块主要有2大部分:答疑模块引导模块。答疑主要解决的是访客疑惑解答的问题;引导主要解决的是用户(B端)营销获联的问题。

答疑模块:

根据条件触发机制的不同,我们将机器人所调用的话术,划分为几个话术库,分别承担不同的答疑任务,覆盖不同方面的访客问题。话术库包括:知识图谱、FAQ话术库、兜底话术库

  • 知识图谱:知识图谱本质上是解决实体架构与实体之间联系的组织,它可通过一个实体指向与它有关联的任一实体,在对话机器人答疑中,起到无法替代的作用。知识图谱的复杂程度,决定了对话应答的智能程度。同时,知识图谱对应的话术,需要通过数据抽取的方式,从各种资源中获取,如:人工对话数据、网站爬虫等,通过数据清洗,构建相应的话术库。
  • FAQ话术库:FAQ是基于语义相似度计算匹配的问答对,本质上与对话主题、访客意图等,无太大关联。所以如何与之建立关联并让对话流程进行,是设计的难点。同时,AI PM一般也需要关注语义相似度计算匹配所使用AI技术实现效果的差一点。比如使用Bert与使用word2vec的差异点是什么?如何做取舍,如何对算法工程师提要求和优化点,等等。这个要求AI PM对各类常用的算法有足够深度的了解。
  • 兜底话术库:兜底话术库的定位,即“兜底话术”。当机器人主要的话术库(上述3种)无法应答的问题出现时,只能使用兜底话术库来做应答。兜底话术特点,在于“通用”,它是普适性的。所以意味着这些话术答疑,回答得不会具有针对性。在对话中只可作为暂时性的过渡用,当兜底话术库出现次数增多后,用户体验将会大大降低。作为售前营销机器人,这是很影响访客留联意愿度的。反过来说,我们也可以通过统计对话中兜底话术出现的频次,来衡量对话效果。通用话术越多,表示机器人应答效果值越低。

引导模块:

引导模块主要体现为对话主题流程的设计,分为 主题引导 和 非主题引导 的设计。

  • 主题引导:主要是各个主题的对话流程设计,旨在机器人可顺畅地、有递进层次关系地进行引导,最后促成访客留联的结果。包括几个组成部分:主题常规流程设计、引导action设计、重复问诊规避设计、主题跳转后流程设计。
  • 非主题引导:非主题引导指的是,未进入主题流程的访客对话,需进行相应的引导。由于前期做了充分的主题分析,所以一般认定未落在预设主题范围内的访客问题,通常也是营销价值不大的访客,甚至是骚扰访客。基于这样的假设,非主题引导一般会讲该类访客,引导到主题引导流程中,同时保持对话顺畅,不至于出现对话断层的情况。

4.2.1.3 对话其他功能模块

在对话主要功能模块之外,我们还对对话进行补充功能设计,包括:欢迎语&引导语模块、暖场模块,以及其他根据行业需要新增的功能模块。

  • 欢迎语&引导语模块: 欢迎语为访客进入对话后,机器人随即发送的第一句话术;引导语为访客进入对话后间隔N秒未说话,机器人发送的用于引导用户开口的话术。这个模块的设定,旨在引导访客开口发送消息,是机器人营销获联的基础。
  • 暖场模块 :暖场即在对话进行中时,访客间隔N秒未说话时,机器人会自动发送一句话术,用于暖和对话,引导访客继续开口,以使对话进程进行。

4.2.1.4 对话序列发送机制

对话序列发送机制,通俗讲即,机器人每间隔多长时间发送话术,每次发送几句话术;当间隔时间内,访客联系发送消息,机器人应做如何的处理,未发出的话术序列应做如何取舍和优先级排序,等等。对话序列发送机制,旨在让机器人的对话应答,与人的应答更相像,在“仿真”程度上尽可能地接近人工,降低访客对“机器”的感知程度。

4.2.2 DST(对话状态追踪)

对话状态追踪,指的是在对话进行过程中,机器人自动记录的对话关键信息。信息包括访客信息、对话状态信息,以及机器人动作信息的记录。用于保证对话进行中的信息记录和信息更新,为机器人应答提供必要的信息来源。

DST 对话状态追踪的设计,主要包括:DST信息字典设计 和 DST信息更新规则 设计。

  • DST信息字典设计 即设计DST需要记录哪些信息,通常在技术实现端会以 session 的方式来记录,具体的设计需与相关开发工程师确定。
  • DST信息更新规则 即DST记录的信息,当对话进行时,如何进行相关信息的更新,确保更新前后信息无误,且能为机器人的应答提供有效的信息源。

4.3 NLG(自然语言生成)

NLG主要是通过语言素材进行自动生成的过程。鉴于现有业务暂未使用相关的技术与设计,这里暂不赘述。我们的替代方式是,直接使用不同话术库中的话术,作为机器人应答输出的内容。

5. 机器人能力界定

当对话产品设计与开发进行到这时,整个机器人的构建已达到规模。我们可以根据前期预设定的机器人能力预期值与划分,拆解出每个机器人能力的实现程度,并根据每一条能力,设定能力界限。即:机器人能做什么,不能做什么。从而为下一步的机器人整体效果评估指标做准备。

6. 机器人整体效果评估指标

基于现有的行业,衡量机器人的对话效果并不简单。我们尽量做到定量分析评估,若实在无法定量,则做定性分析评估。现有的评估方式可分为 上线前测试评估上线后验证评估

上线前测试评估:

上线前的效果评估,可以分为2方面,一方面为技术指标,另一方面为业务指标

  • 技术指标 即考量每个对话功能模块中,应用到的AI算法效果指标。最常用的还是3个基础衡量指标:P值(准确率)、R值(召回率)、F1值。优点在于数据直观,易衡量;缺点是技术指标未必指向业务效果,需要业务指标的补充验证。
  • 业务指标 即通过对话效果评估,来衡量机器人的功能模块/整体效果。常用的方式是通过人工打分的方式。分为:单轮打分、会话级打分、对话功能打分等。优点在于可透过人工视角来检验机器人真正的表现如何,这也是最接近用户视角的检验方式;缺点在于,需投入的人力成本大,且参与测试的人员,与实际访客始终有差别,会造成一定程度的偏误。当然,测试验证的手段也会在实践中一步步改进,尽力去减少尽可能多的偏差。

上线后验证评估:

上线后的评估,通常直接与业务挂钩,用户也通常重点关注业务相关的关键性指标,包括:留联率、对话有效率、对话转化率、访客留存量等等。作为一款SaaS产品,这几个关键性指标也决定了用户付费的意愿度。基于实际线上流量跑出的机器人效果,我们会通过聊天记录,分析存在的改善点,进一步改善对话。

7. 机器人对话效果管理

对话产品的设计与开发,主要针对机器人对话本身的设计。但是在用户侧,需要直观地了解到对话的效果统计,以及需进行对话个性化的配置,以满足每个用户不同的需求。根据对话配置开放权限对象的不同,可分为对内配置与对外配置系统。

对话效果统计:

对话效果的统计,主要参照机器人整体验证的指标参数,分为以下两部分:

  • 机器人业务效果数据:包括上文提到的 留联率、对话有效率、对话转化率、访客留存量 等等。
  • 机器人能力技术指标:主要指机器人功能所用AI技术的P值(准确率)、R值(召回率)、F1值衡量指标。

机器人对话配置:

  • 根据配置的内容,可分为答疑模块、引导模块的配置。通常来讲,答疑模块的话术库,会给予用户充分的配置自主性,因为根据每家用户的业务点不同、时间点不同,会对话术做相应的修改;引导模块,通常会将流程模块化。底层的逻辑、机器人主框架逻辑,是我们会预设好的,开放给用户的主要是主题引导到流程。这样可以实现流程标准化自定义化的结合,充分保证对话效果。
  • 根据配置的对象,可分为内部团队外部用户。内部团队主要指团队内的实施团队,他们会帮助用户,基于用户的业务特性,做对话的相应调整。所以会开放一定的权限给到内部团队修改机器人。外部用户指的是我们产品的用户,开放给用户的部分,是可保证其修改在我们的可控范围之内,可让用户自行修改。

机器人应用管理配置:

机器人应用管理配置主要指机器人的套餐管理,机器人的对话主题管理、意图管理等,主要面向内部团队使用。

总结

对话产品的设计与开发,需要有一套系统的方法论与实践经验指导。看似简单的对话,背后蕴藏着复杂的构思与逻辑。这就要求AI PM不仅需要深入了解业务、深入了解AI算法,也需要深入设计与开发的链路中,建立标准和坚持不懈地为问题寻求解决方案。

AI是个新兴的行业,目前行业的痛点在于AI技术如何落地。在很多场景下,经常出现技术负责人不懂业务,业务负责人不懂技术的情况,造成AI产品开发偏离真正的需求痛点的方向。AI PM需要作为业务和AI技术的枢纽,统筹规划与设计解决方案。在探索中逐步搭建AI产品方法论。

本文主要概览了售前营销机器人从0到1搭建设计的过程,鉴于文章篇幅有限,每个环节中的细节与具体方法论未展开,笔者将会在后续的文章中拆分讲解。希望本文可以帮得到你。

 

作者:咖喱鱼丸,5年PM经验,2年AI PM经验

本文由 @咖喱鱼蛋 原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 这篇文章来的太及时了 请问还会继续更新吗

    来自北京 回复
  2. 这篇文章来的太及时了 请问还会继续更新吗

    来自浙江 回复
  3. 请问上线前测试评估,出了人工评估外,有没有自动化评估方案? 这也是我目前遇到的一个问题,希望可以交流下。

    来自北京 回复
专题
12265人已学习12篇文章
在商战中,运营设计是至关重要的一部分。本专题的文章分享了运营设计的那些思路和技巧。
专题
16792人已学习16篇文章
对于很多软件工程师来说,工作内容都与界面设计有很大的关联。本专题的文章分享了界面设计方法。
专题
43339人已学习18篇文章
继蒸汽机、电力、互联网之后,区块链很可能是下一代颠覆性的核心技术。
专题
18118人已学习15篇文章
本专题的文章分享了Android和iOS在产品、设计、交互等方面的差异。
专题
35260人已学习22篇文章
从动效设计原则、动效工具、制作方法、标注技巧等全方位解读
专题
12905人已学习12篇文章
发觉用户本能的最好方式就是从用户的心理出发,利用人的本能做产品设计,用最“自然”的方式影响用户的行为。本专题的文章分享了产品心理学。