AI,个人随笔 深度解析在构建知识库中使用RAG的细节 RAG流程虽看似简单,但其效果上限取决于知识库的质量与结构化程度。本文重点剖析了“录入”这一基础且易被忽视的环节,涵盖数据源选择、知识结构化录入、内容清洗、知识分块、向量化等方面,助您构建稳固可靠的知识库。 cheninx RAG向量化技术原理
AI,个人随笔 RAG全系列之《向量化与向量召回》 在知识检索领域,向量化与重排序正成为解决海量数据精准检索的关键技术组合。本文深入剖析向量化与重排序技术,从文档拆分的多种优化方法,到向量化模型选择、相似度计算的技巧,为你提供一套全面的知识检索指南,供大家参考。 寻走 RAG向量化技术原理
个人随笔 产品经理需要知道的AI相关知识(二) 本文深入探讨了RAG(检索增强生成)技术和向量化方法,这两种技术在提高数据处理效率、优化自然语言处理及应用落地方面展现出了巨大的潜力。通过具体实例和技术解析,我们将揭示这些技术如何在多个领域内提升信息的可用性和准确性,以及它们对未来技术发展的可能影响。 鹿元甲 RAG向量化数据分析