RAG 项目上线后,开发者们往往会陷入一个误区:只要答案正确,模型就算成功。但当模型开始展露思考过程(CoT),你会发现真相远非如此——推理中的逻辑漏洞、无效信息与错误前提瞬间暴露无遗。本文深度拆解 Chain of Thought 的本质不是让 AI 更聪明,而是教会它如何用人类认可的思维方式「正确地犯错」,揭示从 Prompting 到 RM 的多重约束如何共同塑造可信赖的 AI 推理能力。
Google DeepMind最新研究揭示:多智能体系统并非“越多越好”。盲目堆砌Agent数量不仅浪费算力,还可能损害性能。真正有效的关键在于“架构与任务匹配”:3–4个Agent是当前技术的黄金上限;单Agent准确率超45%时,组团反成负收益;工具密集或顺序依赖型任务尤其不适合多Agent。高效Agent系统应遵循三条铁律——控制工具复杂度、避免强基线下的冗余协作、设计验证瓶颈防错放大。少即是多,精准匹配胜过规模堆砌。