2025 职业大重构·全球篇:同样一份简历,在世界各地值多少钱?
AI 浪潮下,你的简历正被全球重新定价。从硅谷的百万年薪到欧洲的工业AI,从新加坡的治理沙盒到澳洲的行业特化,各国正用签证、生态和战略争夺顶尖人才。本文基于全球人才流动研究,为你拆解这份简历在不同国家的真实价值,助你思考职业的全球配置策略。

我的博士研究是关于全球人才流动,所以最近总有人问我各个地区的情况,我也不得不把各个地方的情况都啃一遍:
美国、加拿大、英国、欧洲、新加坡、澳大利亚,再叠加一整套中国的政策、人才数据、城市报告——签证怎么改、AI 岗位怎么涨、哪几座城市在用房子、户口、个税,把人硬生生“拉”过来。
回答朋友问题是一方面,万一自己有一天也有用呢。
看着看着,有一个感觉特别强:
同样一份简历,放在不同国家,真的是完全不同的“资产定价”。
同样是 5–8 年经验的 AI 工程师、数据科学家、算法同学:在旧金山,可能是 20–30 万美金一年、各国政府抢着要的“战略资源”;在某些国家,就是可被替代的普通白领;在中国,一头连着百万年薪、户口、税收优惠,另一头连着“史上最难就业季”。
这篇文章,我想做一件比较“落地”的事:
- 不跟你聊虚的“世界那么大”,
- 也不是鼓励大家赶紧“润”。
而是把我这段时间的研究和思考跟大家聊聊:
如果把你的职业,当成一只“可以全球配置的资产”,你这份简历,放在不同国家,会值多少钱?
一、国家也在“抢人”
AI 时代的职业,其实有一个“隐形老板”
我们以前想职业,更多是三个层级:
- 公司:大厂还是小公司?
- 岗位:研发还是产品?
- 城市:去一线还是新一线?
但 2024–2025 这轮 AI 浪潮,有个变化挺关键:
你不只是给公司打工,你还在给一整个“国家战略”打工。
因为各国现在抢的,已经不是“泛泛的程序员”,而是那一小撮:能设计、部署、治理复杂 AI 系统的人。
在这个新游戏规则下,一个国家的竞争力,不再只是:
- 有没有资源
- 税低不低
- 基建漂不漂亮
而是三件事(很现实):
- 签证体系快不快、稳不稳 ——我想要你这种人,你能不能快速合法进得来?
- 创新生态“好不好用” ——你来了,是能做事,还是天天被流程、审批和内耗磨光?
- 人才供给和产业布局合不合拍 ——拉来一堆博士,是去做外包,还是直接接在“国家级项目”上?
所以你现在去看:
- 美国:移民依旧难,但顶级 AI 人才的薪资和上限,还是全球天花板;
- 加拿大:盯死美国签证痛点,干脆做一个“北美避风港 + 备用机”;
- 英国:不拼规模,主打“AI 安全 + 金融科技”,抢治理话语权;
- 德法荷:一边上强监管,一边围绕工业、开源和深科技做“主权 AI”;
- 新加坡:不卷大模型参数,死磕“应用场 + 治理沙盒”;
- 澳大利亚:从“矿坑和海滩”,转向“AI + 采矿 / 农业 / 气候科技”;
- 中国:在算力被卡的压力下,强行走出一条“主权算力 + 工业智能 + 极致人才密度”的路。
对你我这样普通职场人来说,这意味着什么?
很简单:
你的人力资本不只是在“公司层面”被定价,背后还有一整套“国家级定价公式”。
二、先用“大白话”算一笔账
同样是高级 AI / 数据 / 工程岗,全球大致什么价位?
我们先粗暴一点,假设你是这样一个人:
5–8 年经验,做 AI / 数据 / 后端 / 算法,真正写过线上的东西,不是只停留在课设。
你把这份简历,分别放到几块典型的土地上,大概是这样的画风(都是大致区间,不是精准报价哈):
在美国(湾区 / 纽约 / 西雅图)
- 年总包:20–35 万美金这个量级
- 生活成本:接近纽约的 80–100%
- 特点:项目含金量 + 职业天花板,是全球顶端。 从基础大模型、AI+Bio,到华尔街量化,你在的就是“定义游戏规则”的那一线。
在加拿大(多伦多 / 温哥华 / 蒙特利尔)
- 年总包:10–15 万美金
- 生活成本:比美国科技城低一截
- 特点:身份确定性极强。签证快,拿 PR 的路径清晰,离美国也近。
在英国(主要是伦敦)
- 年总包:大约 9–14 万美金
- 生活成本:伦敦你懂的,贵
- 特点:工资比美国低,但你会在AI 安全、金融科技和全球治理上积累经验。
在德国 / 法国 / 荷兰
- 年总包:大概 7.5–12.5 万美金
- 生活成本:略低一点,福利厚
- 特点:工业、开源、芯片、深科技,你做的是“AI 嵌在实体工业里”的那种事。
在新加坡
- 年总包:12–18 万美金左右
- 税低得多
- 特点:是金融 + 东南亚数字经济的中枢,城市效率高,小而密。
在澳大利亚(悉尼 / 墨尔本 / 珀斯)
- 年总包:11–16 万美金
- 生活方式偏轻松
- 特点:AI + 采矿 / 农业 / 气候,喜欢机器人、喜欢户外,这里会挺对胃口。
中国这边,更撕裂一点:
- 一头是上百万年薪的大模型架构、芯片底层、具身智能岗位,外加户口、个税补贴、人才房;
- 一头是“史上最难就业季”,普通开发岗、通用算法岗卷到怀疑人生。
你不用记这些数字,记住一个感觉就行:
AI 人才已经进入“全球多边定价时代”。你值多少钱,不只是公司说了算,还取决于你站在哪块土地上。
三、美国
高压、高上限,像一座“职业赌场”
如果只看“职业上限”和“你身边都是谁”,美国现在还是那个最极端的地方。
在湾区,你同事可能是在 OpenAI、Anthropic、Google DeepMind 做基础大模型的人;在波士顿,是把 AI 和 mRNA、新药研发真正揉在一起的“AI+Bio”团队;在西雅图,是把 AI 嵌进云服务、企业级产品的大厂;在纽约,是把大模型塞进高频交易和合规系统的金融机构。
换句话说:
在美国,你不是在“用 AI 工具”,而是在参与定义下一代工具。
这带来的是一种非常直接的简历溢价——你写的那几行项目经历,在很多国家根本不存在对标物。
但代价也很清楚:移民体系“又旧又硬”。
- H-1B 还是要抽签,只是现在更严查“一人多抽”;
- OPT + STEM 延期,把你在美停留时间拉长一点,让你多几次机会;
- 更高级别的,是 O-1A(杰出人才)和 EB-2 NIW(国家利益豁免)——现在开始承认 GitHub 开源贡献、Arxiv 预印本、知名孵化器项目这些“新型成果”,对做 AI 的人其实是利好。
这一整套东西组合起来,就是一句话:
美国给你的是——筹码大,但过程难受。你要有真本事,也要能扛得住焦虑和不确定。
四、加拿大
给你“确定性”的北美备用机
加拿大的思路特别务实:
“美国那边你拿不到身份、被签证折磨?行,那我把‘快 + 稳’做到极致,你来我这边。”
所以你会看到:
- GTS(全球人才流): 对在紧缺列表上的科技岗位,直接承诺工作许可审批在“两周左右”搞定;
- H-1B 持有人开放工签: 专门对着在美国拿 H-1B 的人开一个口,名额一开放就被秒抢光;
- Express Entry STEM 定向抽选: 把 STEM 职业单独拉出来,哪怕你综合分数不是特别炸裂,也有不错的获邀概率。
产业上,加拿大不是简单“帮美国做后援”。Mila、Vector、Amii 这些研究所,把蒙特利尔、多伦多、埃德蒙顿分别打造成:
- 深度学习基础研究中心(Mila);
- AI 商业化中心(Vector);
- 强化学习与能源 / 游戏 AI 应用中心(Amii)。
同时,微软、谷歌、亚马逊都在多伦多、温哥华建大规模工程中心;本土又长出 Cohere、Waabi 这样的独角兽。
从个人视角看,加拿大更像一只风险适中但长期回报不错的资产:工资没有美国夸张,但生活成本低一些,身份路径清晰,生态也不差。
五、英国 + 欧洲
“AI 安全 + 金融”和“工业 + 开源”的另一种人生
英国这几年,在重新给自己定位。
脱欧之后,没了欧盟内自由流动,它就索性把高端人才通道做得更“精英化”。
- 上面那一层是 Global Talent Visa: 不绑雇主,可以随便换工作、创业、做顾问。代价是门槛高,要拿到指定机构的背书,靠的是开源贡献、顶会论文、核心产品经历、推荐信等等。
- 大多数工程师走的是技术工人签证: 薪资门槛比以前高了很多,但对 STEM 博士、新入职者留了折扣空间,整体逻辑是——宁可给高价,也不想用移民渠道引入“廉价劳动力”。
产业上,英国有两个很鲜明的标签:
- AI 安全研究所(AISI) 专门做最前沿模型的红队测试、灾难性风险评估、偏见审查,直接创造出“AI 安全研究员”“技术治理专家”这样的岗位;
- 伦敦–牛津–剑桥 金三角 DeepMind 总部、顶级大学、金融城、风投机构全在这一片,对“AI+金融”“AI+治理”这种复合背景的人非常友好。
问题也挺现实:伦敦太贵,薪资比美国低一档。所以英国卖的是:
“治理话语权 + 金融科技 + 英语环境”,而不是“最高工资”。
再看欧洲大陆,它更像一个讲“数字主权”和“工业能力”的玩家。
- 欧盟统一放宽了 蓝卡 条件,让高技能人才更容易进来;
- 《欧盟 AI 法案》一上,企业合规成本上去了,但同时爆发了一个“AI 合规科技”市场,需要大量既懂技术又懂法规的人。
在这套框架里:
- 德国 用“机会卡”给非欧盟技术人才开一个“先来再说”的门,语言、年龄、经验打分;背后是整个制造业数字化、供应链“Manufacturing-X”的巨大 AI 需求;
- 法国 用 French Tech Visa 把大量 AI 初创装进一个“创业国度”的叙事,加上 Mistral AI、Hugging Face 这样的开源力量,吸引的是那群真心爱开源、不喜欢黑箱模型的人;
- 荷兰 用高技术移民制度和 30% 工资免税,叠加 ASML 把“AI + 芯片 + 光子芯片”做成一条高价值链。
如果你问:在欧洲工作是种什么体验?
大致是——
工资未必最亮眼,但你做的事,很可能和真实工业、能源、交通、政务系统紧密相连;再加上相对友好的福利和生活节奏,更适合想“把技术嵌进现实世界”的那拨人。
六、新加坡 & 澳大利亚
小而精的应用场,和“行业特化”的机会
新加坡这几年很坦诚:算力规模拼不过中美,就选了一条**“做全球最好的 AI 应用场和治理沙盒”**的路。
一方面,用国家 AI 战略 2.0 定了个硬指标——5 年内把 AI 从业人数翻倍到 1.5 万;另一方面,用三层签证把不同层级的 AI 人才“分门别类”拉进来:
- 顶层:ONE Pass 给全球高收入顶级人才,允许同时开公司、打工、家属也有工作权;
- 中层:Tech.Pass 看你过去带过什么公司、做过什么产品,而不是只看工资数字;
- 基座:COMPASS + 紧缺职业清单 AI 工程师、数据科学家这些职业在清单里,拿工作准证更容易。
产业上,新加坡抓的是自己最熟的两块:
- 金融:监管沙盒 Project Guardian 在试“AI + 资产代币化 + DeFi”;
- 医疗:通过 HEALIX、HealthX 之类的平台,做全国医疗数据的安全开放;
- 再加上大量中美科技公司把亚太总部放在新加坡,它也成了东南亚本地化、区域运营的前线。
如果你是那种:
- 想留在亚洲;
- 希望个人税负轻一点;
- 喜欢高效、秩序感强的城市;
新加坡给出的,就是一套“小但密度高”的职业场。
澳大利亚则是另外一种风格。
过去我们提澳洲,容易想到“矿、海滩、奶粉”。但 2025 年之后,它在认真用 AI 改造自己的老本行:
- 采矿:自动驾驶矿卡、远程控制中心、现场机器人;
- 农业:卫星遥感 + AI 做精细化农业;
- 气候科技:可再生能源、环境监测。
在签证上,澳洲把之前口径很宽的 GTI 收掉,改成更聚焦的 国家创新签证(NIV),只冲着那几条“国家重建基金”优先领域的人才:可再生能源、医疗科学、交通、国防、高端制造、资源科技。
简单说:
如果你的技能能让矿场更聪明、农场更精准、电网更高效,你就是澳洲要砸资源争取的那部分人。
喜欢机器人、现场系统、动手硬件,又受不了极度高强度内卷的人,这条路是可以认真评估的。
七、再看中国
在“缺芯”和全球博弈之下,你的简历被怎么定价?
讲完外面,我们必须把中国放进这张图里,才完整。
2025 年的 AI 世界,大致可以理解成一条“双轨制”:
- 一条轨在美国:靠 OpenAI、Google、Nvidia,那种“算力暴力美学”,继续冲 AGI;
- 另一条轨在中国:在高端 GPU 被卡脖子的背景下,强行走出一条 “主权算力 + 工业智能 + 极高人才密度” 的路。
你在国内求职、跳槽、涨薪时感受到的“怪异”,其实很多都来自这套结构性变化。
1. 人才:K 型分化,真的已经摆在台面上了
宏观上,中国 AI 人才的故事是这样的:
- 一边是总量过剩: 互联网缩招,CS 毕业生“史上最难就业季”,初级岗位卷到飞起;
- 一边是顶尖稀缺: 大模型架构、国产芯片底层、具身智能这些岗位,企业砸钱抢人,城市政府亲自下场抢人。
北京、上海、深圳在这件事上几乎是“以城为单位开价”:
- 北京:给 AI、集成电路、生物医药等领域的顶尖毕业生开“户口直通车”,不再让你在积分和等待中耗几年;
- 上海:把海外人才居住证做长、做稳,对世界前 50 名校毕业生,落户条件大幅放宽,基本是“从实验室到张江科学城”的一条直线;
- 深圳:通过大湾区个税补贴,把符合条件的海外高端人才实际税率压到 15% 左右,再叠加人才房,把年薪百万上面再抬一截。
薪酬层面则非常典型的 K 型结构:
- 上面那条: 能做大模型预训练、微调、推理优化的博士生,起薪就能到 100 万人民币往上。 某些岗位校招直接给 8–11 万月薪、14 薪,年包轻松 150 万+; 做国产芯片底层(比如昇腾 CANN)的高级算法工程师,工资加股权一年 200 万+不是个例。
- 下面那条: 做 CRUD、做通用推荐、只会调 API 的同学,在招聘市场上就非常吃亏。 很多名校背景的人,也会面临“薪资没有明显起色,甚至找工作都难”的局面。
所以你会看到一个很残酷但诚实的事实:
市场在用极高溢价,收买“解决难题的人”;用极度内卷,挤压“可以被 AI 替代的人”。
2. 算力:硬件被卡,整个生态被迫长成另一种形状
另一个决定中国定价逻辑的,是算力。
高端 Nvidia GPU 被卡之后,中国短期用 H20 这种“特供版”来止血——巨头们砸钱囤了一堆,给未来两三年的训练和推理留点余地。但大家心里都明白,这只是缓冲期,美国随时可以进一步收紧。
于是,几件事几乎是同步发生的:
- 华为昇腾(Ascend)被推到台前, 成为“全村的希望”:硬件算力指标越来越接近国际高端产品;
- 软件栈成了最大难题: 原来大家习惯在 CUDA 上写的东西,现在要在 CANN、MindSpore 上重走一遍;
- 地方政府上了一个很“中式”的机制:算力券。 给初创、实验室发“券”,让他们去用基于国产芯片的智算中心, 等于政府掏钱在需求端“保底”,帮国产芯片熬过生态冷启动期。
对一个工程师来说,这意味着:
- 你会很早接触到“算力有上限”的现实;
- 你不得不在架构、显存、部署上花更多精力;
- 你会越来越熟悉国产软件栈的各种坑和特点;
- 你也会因此,变成那批“在资源受限环境里,能把东西跑起来的人”。
这套能力,未来在全球范围内,未必是个“减分项”。
3. 软件和应用
从“堆算力”到“榨每一块显卡”,再到“重 B 端、重工业”
因为算力有限,中国这两年的软件层创新,其实是围绕一个目标展开的:
如何在有限的 GPU 上,跑更多的模型、服务更多的人。
于是你会看到:
- 各种显存管理、注意力优化、低比特量化被用到极致, 同样一块卡,推理吞吐能被抠出两三倍来;
- 模型侧,更多公司倾向用更聪明的结构(比如 MoE、稀疏激活), 用“智商”弥补“力气”的不足;
- 一批创业公司(有人给它们起名叫“AI 六小虎”)崛起: 有的死磕代码生成和数理推理,以超低价格开放 API; 有的主打超长文本,把 20 万字的文档当日常输入; 有的靠学院背景和政企场景站稳脚跟; 有的玩情绪交互、角色扮演,粘住 C 端用户。
更重要的是,中国的生成式 AI,天生带着**“重 B 端、重工业”的基因**。
- C 端聊天机器人要面对非常严格的监管;
- B 端、工业端应用,则刚好跟中国的优势对上: 完整的工业体系、大量制造业、政府牵头的“工业大脑”、城市级项目。
于是你会看到:
- 华为做的盘古模型,直接嵌在矿山、气象、药物筛选等场景里;
- 阿里把通义塞进钉钉、电商、物流;
- 长三角在用各种“工业大脑”做质量检测、供应链预测;
- 深圳这边,手机厂、小家电厂,把小模型塞进终端设备,做端侧 AI。
再叠加区域差异:
- 北京:算法公司、基础模型、政策、顶尖高校,全都堆在这;
- 上海:高端制造 + 金融 AI,一边接全球,一边接实体;
- 深圳:华为、大疆、比亚迪,把“AI + 硬件 + 机器人”做到极致;
- 杭州:云 + 电商 + 新一代 AI 创业公司(比如 DeepSeek 这类),把应用生态和算力底座捏在一起。
用一句话概括:
中国这条路,不是“纯堆算力的硅谷复制版”,而更像一条“系统工程 + 工业落地 + 供应链安全”的路径。
对个人来说,它会塑造出一批很特别的人:在资源有限、工程复杂的环境里,把系统啃下来的人。
八、那普通人到底能用这篇文章干嘛?
说了这么多国家、政策、签证,回到你我最现实的问题:
“那我,到底该干嘛?”
我想,至少可以帮你换几个视角——从“我要不要出国”,升级到下面这些问题:
1. 先问自己
你现在这套能力,在全球是“普品”,还是“稀缺货”?
很直白的一个区分:
- 如果你的工作主要是: 写 CRUD、做简单报表、调第三方 API、写一点业务逻辑, 这一类岗位,在全球范围内现在都在被 AI 和外包挤压;
- 如果你做的是: 大模型相关(预训练、微调、推理优化)、 大规模系统工程(分布式、MLOps)、 芯片 + 软件栈、工业场景里的 AI(制造 / 能源 / 交通 / 医疗), 这一类,在各国的政策文件里,基本都是明确点名的“紧缺资源”。
不论你打算不打算出国,这个区分,对你都是有用的。先让自己的能力,从“可被替代”往“可被国家战略点名”的那一边挪,这是第一步。
2. 然后再问
同样这套能力,放在不同土地上,“定价逻辑”是什么?
比如:
- 你是国内大厂的后端 / 算法中坚, 能把模型真落到业务里,懂一点工程、懂一点业务: 放在美国:可能工资最高,但要扛签证不确定; 放在加拿大:工资略低,但身份和生活确定性高; 放在英国 / 欧洲:可能工资再低一点,但会在工业、金融、治理上积累独特经验; 留在中国:如果你接上的是大模型、国产芯片、工业场景,那你是在这条“系统工程 + 工业智能”的主线上。
- 你是一个刚起步 / 转行的人: 在中国先把一套在全球都讲得通的技能打牢—— 做过完整的 AI 小产品、Agent 应用、为真实行业解决过问题; 当你有这几块作品,再去想:我要不要把这份简历拿去别的国家试试,是顺理成章的事。
3. 最后,可以慢慢培养一个“全球定价”的习惯
以后你再看到一个岗位,不管是在国内还是海外,可以试着多问一句:
“如果我把这套能力,搬到别的国家,大概会值多少钱?它在那里,是个普品,还是个稀缺品?”
不一定要真的去,但你具不具备“走得出去也说得通”的能力,本身就是一个很好的自检尺度。
写到这里,我不太想给出一个“统一答案”,因为每个人的家庭、性格、风险偏好都不一样。
我能做的,只是把我这段时间看全球人才流动、看各个国家怎么用政策、签证、税收、城市资源争抢 AI 人才的笔记,翻译成一个普通职场人也能用得上的视角:
-AI 在给岗位重新定价;
-国家在给人才重新定价;
-中国也在一个高压但很特别的轨道上给某一批人不断加码。
唯一不能再沿用旧逻辑的,是我们对自己职业的定价方式。
如果这篇文章有一点点用,大概就是——下次你再为“我这份工作在国内还能干几年”焦虑的时候,也可以顺手,再问自己一句:
“同样一份简历,如果放到世界地图上,它应该值多少钱?我有没有可能,让它在更多地方都说得通、拿得出手?”
这个问题,不需要今天就有答案。但只要你开始认真实际地去想,你做职业决定的方式,就已经跟过去不一样了。
专栏作家
陆晨昕,公众号:晨昕资本论/晨昕全球Mkt ,人人都是产品经理专栏作家。资深媒体人,创业者,专注于科技&互联网&内容&教育行业深度研究。
本文原创发布于人人都是产品经理,未经许可,禁止转载。
题图来自 Unsplash,基于CC0协议
- 目前还没评论,等你发挥!

起点课堂会员权益




