大语言模型:LLM的高阶应用「模型微调」

1 评论 923 浏览 2 收藏 9 分钟

在人工智能的疆域中,大语言模型(LLM)正以其强大的语言理解能力,引领着技术的新浪潮。文章《大语言模型:LLM的高阶应用「模型微调」》深入探讨了如何通过模型微调来优化LLM,使其更精准地适应特定任务。正如阿兰·图灵所预见的,机器不仅能够计算,还能学习和适应。本文将带您深入了解模型微调的艺术,探索AI的无限可能。

上节我们介绍了LLM如何通过工具和插件来扩展能力。今天我们来介绍另外一种扩展LLM能力的方式:模型微调。

一、模型微调的概念

模型微调是指在LLM模型的基础上,针对特定的任务或领域,通过进一步训练来调整模型参数的过程。

这个过程通常涉及到在特定任务的数据集上进行额外的训练,使得模型能够更好地适应新的任务或领域。

微调某种程度上也可以看作是一种迁移学习(Transfer Learning)的形式,它利用了预训练模型在语言理解方面的通用能力,并将其适配到特定的应用场景中。

二、模型微调的方法

全参数微调:全参数微调是指在微调过程中,模型的所有参数都会根据新任务的数据进行更新。这种方法适用于新任务与预训练任务差异较大,或者新任务的数据量较大的情况。

冻结层微调:在冻结层微调中,模型的一部分参数(通常是预训练模型的底层参数)被冻结,不参与微调过程,而只有顶层的参数会被更新。这种方法适用于新任务与预训练任务相似度较高,或者新任务的数据量较小的情况。

适应性微调:适应性微调是一种更为灵活的方法,它允许模型在微调过程中动态地调整哪些参数需要更新。这种方法可以根据新任务的特定需求,有选择性地更新模型参数。

三、模型微调的流程

以GPT模型 的API来微调LLM,具体流程包括:准备数据、上传数据、执行微调任务、微调模型调用,4个步骤:

1、准备数据:

更新LLM需要提供一个包含示例的数据集。该数据集应该是一个JSONL文件,其中每一行对应一个提示词−补全文本对。

{“prompt”: “<prompt text>”, “completion”: “<completion text>”}

{“prompt”: “<prompt text>”, “completion”: “<completion text>”}

{“prompt”: “<prompt text>”, “completion”: “<completion text>”} …

JSONL文件是文本文件,其中每一行表示一个单独的JSON对象。有点儿类似于MangoDB之类的文档数据库类型。

如果你有足够的数据,那么该工具会询问你是否要将数据分为训练集和验证集。这是一种推荐的做法。算法将使用训练集来微调模型参数。验证集则用于衡量模型在未用于更新参数的数据上的性能。

对LLM的微调受益于高质量示例,最好由专家审核。当使用已有数据集进行微调时,请确保对数据进行筛查,以排除具有冒犯性的内容或不准确的内容。如果数据集过大而无法手动审核所有内容,则可以检查随机样本。

2、上传数据

准备好数据后,需要将其上传到OpenAI服务器。OpenAI API提供了不同的函数来操作文件。上传文件的方法如下:

openai.File.create(      

   file=open(“out_openai_completion_prepared.jsonl”,  “rb”),

   purpose=’fine-tune’

)

两个参数是必需的:file和purpose。在微调时,将purpose设置为fine-tune。这将验证用于微调的下载文件格式。此函数的输出是一个字典,你可以在id字段中检索文件ID。

删除文件:openai.File.delete(“file-z5mGg(…)”),file_id参数是必需的。

列出所有已上传的文件:openai.File.list()

3、执行微调的任务

微调已上传文件是一个简单的过程。端点openai.FineTune.create在OpenAI服务器上创建一个作业,以根据给定的数据集优化指定的模型。该函数的响应包含排队作业的详细信息,如作业的状态、fine_tune_id,以及过程结束时模型的名称。

列出微调作业:openai.FineTune.list()

取消微调作业:openai.FineTune.cancel()

4、微调模型的调用

当模型完成微调作业后,调用微调后的模型名称,即可使用微调后的模型,这个模型会使用训练数据的领域知识,来进行对话输出。

四、模型微调的优势

模型微调之所以受到广泛关注,主要得益于以下几个优势:

1、微调可以使预训练模型更好地适应特定的任务,从而提高模型在该任务上的性能。

2、相比于从头开始训练一个模型,微调可以节省大量的计算资源和时间。

3、微调可以利用预训练模型在大规模数据上学习到的知识,将其迁移到新的任务或领域中。

五、模型微调的应用

模型微调在实际应用中非常广泛,以下是一些典型的例子:

问答系统:在问答系统中,微调可以使模型更好地理解特定领域的知识,从而提供更准确的答案。

文本分类:在文本分类任务中,微调可以帮助模型识别特定类型的文本,如垃圾邮件检测、情感分析等。

机器翻译:在机器翻译领域,微调可以使模型更好地适应特定语言对的翻译任务。

摘要生成:在自动摘要任务中,微调可以帮助模型生成更准确、更连贯的摘要。

对话系统:在对话系统中,微调可以使模型更好地理解上下文,提供更自然、更相关的回应。

模型微调作为大语言模型的高阶应用,已经在多个领域展现出其独特的价值。

随着技术的不断发展,我们有理由相信,模型微调将在未来发挥更加重要的作用,推动人工智能技术的进步。

对于产品经理和和开发者来说,深入理解和掌握模型微调技术,无疑为在AI领域探索和创新提供强大的助力。

本文由人人都是产品经理作者【长弓PM】,微信公众号:【AI产品经理社】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。

题图来自Unsplash,基于 CC0 协议。

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 对于产品经理来说,学习LLM语言模型会变得越来越重要。

    来自广东 回复