"数字化营销"相关的文章
用户兴趣和语义理解,让人工智能大模型为你的数字化营销业务找到最佳召回

用户兴趣和语义理解,让人工智能大模型为你的数字化营销业务找到最佳召回

召回模型是数字化营销业务中的核心环节,它决定了用户能否看到与自己相关的内容,从而影响用户的满意度和转化率。 传统的召回模型通常基于用户的行为数据和内容的特征数据,通过一些简单的规则或机器学习算法,来计算用户和内容的匹配度,然后按照一定的排序规则,向用户推荐最匹配的内容。 然而,这种方法存在一些局限性,比如数据稀疏、内容冷启动、用户兴趣变化等,导致召回效果不理想。 随着人工智能技术的发展,特别是近年来出现的一些人工智能大模型,如GPT-3、BERT、DALL-E等,为召回模型提供了新的思路和方法。 人工智能大模型是指那些具有超大规模的参数和数据的深度学习模型,它们能够在多个领域和任务上表现出惊人的性能,甚至超越人类的水平。 人工智能大模型的优势在于它们能够从海量的数据中学习到丰富的知识和语义,从而实现对用户和内容的深度理解,进而提高召回的精度和效率。 本文将从产品经理的视角,介绍如何应用人工智能大模型实现基于综合分析的召回模型,主要包括基于用户兴趣的召回模型和基于语义理解的召回模型,以及它们在电商、广告营销和用户增长等数字化营销业务中的应用场景和效果。 旨在帮助产品经理和运营人员了解人工智能大模型的潜力和价值,以及如何利用它们来优化数字化营销业务的召回效果。
召回模型优化:让你的数字化营销更高效

召回模型优化:让你的数字化营销更高效

召回模型是一种在数字化营销中广泛使用的机器学习模型,它的作用是根据用户的特征和行为,从海量的候选物品中筛选出最有可能被用户感兴趣或点击的物品,从而提高用户的满意度和转化率。召回模型的优化是一项重要的工作,它涉及到如何选择合适的召回模型类型,如何设置合理的召回模型目标,以及如何采用有效的召回模型方法。本文从产品经理的视角,介绍了召回模型的定义、作用、类型、优化的意义、目标和方法,并且给出了一些实例和示意图,帮助读者理解和掌握召回模型优化的基本概念和技能。
AI人工智能
人工智能大模型如何助力数字化营销流量策略优化

人工智能大模型如何助力数字化营销流量策略优化

流量策略是指通过各种手段和渠道来吸引和留住用户,提高用户的活跃度和转化率,从而实现业务目标的一系列方法和措施。人工智能大模型是指具有超大规模的参数和数据的深度学习模型,它们能够在多个领域和任务上表现出惊人的智能和创造力,为流量策略的优化提供了强大的支持和可能性。本文介绍如何利用人工智能大模型进行内容策略、广告投放策略、用户体验策略和用户增长策略的优化,以及在这些过程中需要注意的问题和挑战。
营销推广
商品工业属性画像:数字化营销的核心竞争力

商品工业属性画像:数字化营销的核心竞争力

商品工业属性画像是指对商品的各种属性和特征进行系统化的描述和分析,以便更好地了解商品的本质和价值。商品工业属性画像在数字化营销中有着重要的作用。本文从理论和实践两个方面,结合一些实际的案例和示意图,介绍商品工业属性画像的概念和方法、在数字化营销中的应用和价值,以及商品工业属性画像的具体操作和效果。