数据分析项目是什么?有什么问题?

5 评论 15287 浏览 58 收藏 10 分钟
🔗 技术知识、行业知识、业务知识等,都是B端产品经理需要了解和掌握的领域相关的知识,有助于进行产品方案设计和评估

本文针对数据分析项目的几个问题:是什么、症结在哪里,分别进行了详细介绍,帮你解答疑问。

“不当跑数机,我要做项目。”

很多做数据的同学都有这个强烈的心声。每天机械的跑数,完全不知道数据有啥用的状态确实很不好,大家都想有个独立负责项目的机会。

然而,很多同学心中充满疑惑:什么是数据分析项目?为啥我在公司里没见过数据分析项目?

我在网上百度了泰坦尼克、淘宝电商、美国信用卡的代码,ctrl C+ctrl V一遍,算不算个项目?

今天就从第一个问题说起:什么是数据分析项目。

一、什么是项目?

项目本身的含义是:在特定时间期限内,将人力、物力组织起来,达成特定产出目标。这一句话虽然简单,却带出了项目三大关键维度:时间、成本、产出质量。这三个维度,就是俗称的“项目铁三角”(如下图所示)。

之所以叫项目,是和常规工作对应的。

  • 项目:特定时间,特定人群,特定产出。
  • 常规工作:每天都干,固定一群人,干完就行。

你看同样是铁路,做老铁路的养护,兢兢业业一辈子也没人知道;但是新建一条线路,必定是张灯结彩,锣鼓喧天,鞭炮齐鸣。我们都喜欢做项目,不爱沉溺在常规工作里,大致也是如此。在企业里有些部门项目很多,经常动不动搞个大新闻,有些部门项目很少,就只能忍气吞声了(如下图)。

二、什么是数据项目?

灵魂拷问:数据在公司里的地位,更像谁?【单选题】

  1. 销售
  2. 运营
  3. 品牌
  4. 供应链

一个残酷的真相是:虽然老板们嘴上嚷嚷的“大数据”“人工智能”“数字化转型”,但是在大部分企业里,数据更像供应链。虽然大家嘴上都说这玩意很重要,是未来,是趋势。可到头来,一你不能为公司挣钱,二你是服务其他人的脏活累活。

这种尴尬处境,就注定了数据的地位高不到哪里去。地位稍微高一点的,是可以直接拿数据挣钱(比如出售数据、数据服务的咨询公司、第三方服务公司、互联网toB产品)或者等着数据圈钱(招一堆程序猿,向VC爸爸证明自己是人工智能大数据公司)的少数企业。地位不高,自然分配的项目就少了。

三、什么是数据分析项目?

分配项目少的核心表现是:数据的工作一但拆开,就通通变成日常工作

是滴,写代码的又不是他们,他们完全理解不了“接一下那个数据”七个字背后,你到底得付出多少努力。这一点还比不上供应链呢,至少大家看到堆积如山的物料,会觉得他们辛苦。大家看数据的眼光,更类似家里的老妈子:“你一天天对着电脑在弄啥呢”。

因此,数据类工作想要立项,就只剩一种办法:毕其功于一役!在一个跟数据一点关系的都没有,但听起来贼牛逼的名字(是滴,说的就是商业智能)的包装下,把上边这些脏活累活打包全干了。

其中最为合法、公开,有存在感的,莫过:带数据大屏的BI项目。无数传统企业的数据部门,就是靠着做大屏项目博得老板欢心的。

当然,这种局面在这两年有变化。阿尔法狗一声汪汪,给无数老板们带来了人工智能的希望。当面对解决不了的问题的时候,人们总寄希望于某个自己耳朵听不懂、别人口中很神奇的力量。在过去是《周易》铜钱八卦,在现在是人工智能算法。于是很多算法项目纷纷上马。

实际上,在自媒体大肆炒作之前,就已经有很多利用算法改进业务的成功案例,比如通过算法识别违约风险,提高外呼成功率,提升用户点击率,预测用电数/话务量,等等等。但这些应用有着非常严苛数据质量和非常明确的应用场景。并不是说随便捞几条数据丢进模型一弄就有效果的。更不是说脱离管理制度、资金投入、基础建设、业务配合,只要代码一运行钞票就从屏幕里喷薄而出。于是很多贸然趟进算法浑水的项目都悲剧收场。

不过没有关系。很快,大家就找到了新的自己耳朵听不懂、别人口中很神奇的力量:数据中台!于是重新的一轮眼见高楼起,眼见高楼塌又在2019-2020年上演。

四、数据分析项目的症结在哪里?

站在项目铁三角的角度,对比数据和其他项目,症结非常容易看到:

即使是数字本身,也很难体现价值。比如原因分析,即使不看数据,业务自己也能猜到几条原因。如果仅仅局限在业务提一个假设数据验证一个,那就跟叼飞盘的汪子没啥区别。虽然自己跑得辛苦,人家还认为你就是个打杂的

以上,才是数据分析项目立项少,成功难的本质原因。当然,更要命的是,很多新人意识不到这一点(特别是研究生刚毕业,写了几篇名字高深的论文的)。他们炫耀着自己的图表、模型、代码,像一个在班里炫耀新买的变形金刚的小学生。内心满满的:“我好厉害吧”。忽视了真要运货,最普通的翻斗车都比擎天柱大哥强。

想破局,还得紧紧抓住项目铁三角:

1. 时间

  • 平时建立监控体系,把劳动力从临时取数解放出来。
  • 基于日常数据,积累经验,捕捉战机!
  • 在关键时机引发业务危机感,承接独立负责的项目。

2. 成本

  • 平时尽一切可能推动数据质量改善。
  • 在时机合适时推动数据基础建设前进。
  • 每次项目考虑最少数据,最简单模型解决战斗。

3. 质量基建类

  • 多做从0到1的工作,填补空白,彰显成绩。
  • 方法类:建立推理逻辑,带着业务的思路走,做教练、不做老师。
  • 建议类:提100个假设,撑爆业务的脑袋,掌握输出成果的主动权。

以上,时间和成本估计大家都好理解,质量部分得结合具体的案例,才更容易懂。如果大家感兴趣,我们下一篇从基建类项目讲起,就讲常规的报表建设,如何延伸出一个项目来。

#专栏作家#

接地气的陈老师,微信公众号:接地气学堂,人人都是产品经理专栏作家。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。

本文原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 数据质量基建一定要长期、持续推,防坑必做,真的….

    来自北京 回复
  2. 赞,角度新奇,工作中存在的,但是平时没有察觉出来的问题

    来自四川 回复
  3. 8错

    来自内蒙古 回复
  4. 内斗指南

    来自上海 回复
    1. 666

      来自四川 回复
专题
16192人已学习12篇文章
数据中台是处于业务前台和技术后台的中间层。本专题的文章分享了如何搭建数据中台。
专题
13503人已学习12篇文章
随着互联网的不断发展,如今获客渠道及方式也有很多。本专题的文章分享了获客渠道及方法。
专题
13686人已学习13篇文章
对企业而言,计费管理系统是相对基础和重要的一个系统,那么,怎么搭建计费管理系统呢?你了解计费系统的主要功能吗?本专题的文章分享了计费系统设计指南。
专题
18870人已学习15篇文章
表单是我们比较常见的一个信息录入工具。本专题的文章提供了表单设计指南。
专题
14612人已学习12篇文章
排行榜在帮助用户做决定的同时,引导用户购买目标产品,极大降低了用户的选择成本。本专题的文章分享了对于排行榜的设计思考。