描述现状类的分析该怎么做

5 评论 8891 浏览 21 收藏 10 分钟
🔗 产品经理的核心价值是能够准确发现和满足用户需求,把用户需求转化为产品功能,并协调资源推动落地,创造商业价值

编辑导语:数据分析师刚开始都会专注于最基础的数据分析需求,但有时会做成取数类的需求;怎么把这种简单的需求做的深入,发挥出数据分析师的价值呢?本文作者进行了详细的分析,我们一起来看一下。

描述一个业务问题的现状是什么,是最基础的数据分析需求。

常见的问题类型有:

  • 产品经理:某个功能的数据表现如何?
  • 活动运营:某个活动的数据情况怎么样?
  • 渠道运营:新渠道的引流人数是多少。

新人数据分析师一开始往往就是从这类数据分析需求开始做。

新手很容易就会把这种问题做成一个取数类的需求。

最后给出一堆数据:点击率是多少、留存率是多少、转化率是多少。

业务方最后问,这些数据能得出什么结论?

那么,我们能不能把这种简单需求做地更加深入,更好地发挥数据分析师的价值呢?

今天就来分享一下,数据分析流程中的“是什么”,或者说叫做“描述现状”,究竟该怎么做。

一、描述现状,不是单纯取数

首先,描述现状的基础是指标。

通过提取指标的数据,反应实际的业务现状;但描述现状绝对不仅仅是罗列一堆数据,只列数据,没有结论,这是新人最爱犯的错误。

原因很简单,新人也知道好的分析要有结论;但是作为一个新人,不懂业务,不知道该怎么下结论。

新人分析师看到次日留存率是30%,琢磨着说点啥好呢?留存率比较低?还是留存率比较高?

自己对业务一知半解,写高还是写低都不好,谨慎的同学这时候就倾向于不要下结论。

先按照取数需求做,等过段时间熟悉了业务再说,但这样很容易被加上一个“不懂业务”的标签;在别人眼里你是一个写SQL的工具人,逐渐成为一个取数机器。

二、描述现状,不能主观判断

还有一类数据分析师,胆子很大,很敢写结论。

他们不局限于取数,会根据自己的业务理解,给出一个结论。

可惜方法不对,也容易出问题。

小白在做广告分析,发现广告曝光的点击率2%。

小白心想:点击率才2%,100个人里只有2个人会点击,这个数据肯定很低了吧?于是直接下结论,曝光点击率只有2%,我认为点击率较低。

这个我认为很要命,类似的还有“我觉得”、“我感觉”这些词语;这种分析结果很容易和业务撕逼,主要焦点在于曝光点击率2%到底算不算低。

而且数据分析师往往会败下阵来,业务方连问几个问题就招架不住了。

为什么2%点击率就是低了?你知道广告的平均点击率是多少吗?你知道业内平均水平是多少吗?

发生这种情况,小白就被加上了“不专业”的标签。

在别人眼里,你是一个不严谨的人,任职数据分析师的基础能力都不具备。

要知道,数据分析师很靠专业性生存,如果公司里业务方不相信你的结论,那么你在这家公司就很难混得好了。

三、描述现状的正确做法

不能不下结论,又不能乱下结论。

描述现状类的分析该怎么做

那怎么在不了解业务的情况下,快速给出高质量的分析结果呢?

举一个生活中的例子。

大家应该都有过体检的经历,血常规的体检报告里面,什么白细胞数量、红细胞数量、血小板数量等等都有具体的数值,看起来特别精确。

单纯取数也就是给一个这样的数据。

但是只有这个数据好像没啥用,你知道红细胞数量是2.5,能得出什么结论?

没有医学常识的人,一般也不敢乱下判断。

好在这种报告后面都会有一列,叫做“参考值”。

比如红细胞数量参考值3.5-5.5;现在的数据是2.5,正常范围是3.5-5.5,比较一下,得出结论:红细胞偏少了。

这样一个没有医学常识的人,也能很快解读出数据代表的含义。

相比之前的案例,我们从数据到结论,多了一个确定的参考标准。

通过上面这个案例,总结一下标准的描述现状的过程。

  • 第一步,现状是什么,提取指标数据的具体数值。
  • 第二步,标准是什么,列出参考标准是什么。
  • 第三步,结论是什么,综合现状和标准,得出结论。

只有现状数据+标准才能得出一个“是什么的结论”。

所以在写数据分析报告的时候,正确的做法是:用户流失率达到32%,相比去年同期提高5个百分点,流失率较高。

描述现状类的分析该怎么做

数据+标准=结论的分析流程,结构非常简单,不过标准怎么定?

常见的标准第一类是通过数据客观得出的,如同比、环比、历史最高、历史最低等。

第二类是业务制定的,如KPI目标、老板的预期等等。

如果一次营销活动上线前就制定了活动目标,那么这个标准直接就用这个目标就可以了。

如果没有那么清楚,只是简单地想要做个活动提升一下销量,那么就可以用第一类标准。

四、严谨的逻辑是数据分析师的基础

按照这种结构描述现状,也有可能会出现业务方不认可的情况。

比如你用同比,业务方认为去年同期有特殊事件,所以用去年同期的数据对比结果不合理,改用环比更好。

遇到这样的质疑,也并不会动摇数据分析师专业性的根基。

数据分析师同学一定要知道自己的价值是什么。

我们提供的结论不能是天马行空的猜想,除非是在头脑风暴会议上——创意类的想法是业务同学应该做的。

数据分析师提供的应当是逻辑关系非常清楚的结论,这种结论换任何一个人来分析,得出的结果一定是一样的;因为数据是确定的,标准是确定的,那么结论也一定是确定的。

业务方可以质疑你论证过程中为什么选这个指标,为什么选择这个标准,但业务方不能质疑你的逻辑有问题。

如果你看到广告点击率2%就觉得点击率很低,下结论只凭借自己的主观判断的话,那么很难预测你之后给出的结论是否靠谱。

换句话说,你的结论准确性不可控。

一个严谨的分析师,他的逻辑是清晰的,那么得出的结论就是可信的;只要论证过程大家都认为没有问题,那么最终结论就能被大家接受。

五、总结

描述现状,解决业务现状“是什么”的问题,这是最基础的一种数据分析需求。

这类分析虽然简单,但很能反应一个分析师的基本功;之前提到的指标思维、对比思维、逻辑思维在这个分析里都会用到。

这种需求做的多了,应该磨练出一颗只讲事实和逻辑的心,而不是走向“取数机器”和“我认为2%偏低”这两个极端。

希望本篇帮到数据分析师新人,下一期准备讲“原因查找”,欢迎关注。

#专栏作家#

三元方差,公众号:三元方差(sanyuanfangcha),人人都是产品经理专栏作家。专注用数据驱动业务增长,擅长数据分析、用户增长。喜欢阅读、思考和创作。

本文原创发布于人人都是产品经理。未经许可,禁止转载。

题图来自Unsplash,基于CC0协议

更多精彩内容,请关注人人都是产品经理微信公众号或下载App
评论
评论请登录
  1. 学到了

    来自台湾 回复
  2. 学到啦

    来自北京 回复
  3. 逻辑清晰,很有收获,其中关于标准,已体检报告的为例,理解较容易,点赞。

    来自广东 回复
  4. 有收获

    回复
  5. 不错

    回复
专题
15968人已学习12篇文章
采购管理是对采购业务过程进行组织、实施与控制的管理过程。本专题的文章提供了采购管理设计指南。
专题
18098人已学习12篇文章
本专题的文章分享了竞品分析的案例。
专题
31112人已学习14篇文章
不管你是产品、运营还是文案,你都需要懂用户思维。
专题
16253人已学习13篇文章
在产品工作中,产品的可行性分析就太重要了,这是产品从想法到实施必须经历的。本专题的文章分享了如何做产品可行性分析。
专题
11753人已学习12篇文章
任何理论都有它的局限性和前提条件,没有一种方法论是永远有效的。品牌方法论一直处在变化阶段,它随着时代发展的变化而变化。本专题的文章分享了品牌方法论。
专题
16092人已学习12篇文章
CDP,即客户数据平台,是企业用来集中管理和整合客户数据的工具。本专题的文章分享了什么是CDP和如何搭建CDP平台。